Semistable quotients

Peter Heinzner; Luca Migliorini; Marzia Polito

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1998)

  • Volume: 26, Issue: 2, page 233-248
  • ISSN: 0391-173X

How to cite

top

Heinzner, Peter, Migliorini, Luca, and Polito, Marzia. "Semistable quotients." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 26.2 (1998): 233-248. <http://eudml.org/doc/84327>.

@article{Heinzner1998,
author = {Heinzner, Peter, Migliorini, Luca, Polito, Marzia},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {complex reductive Lie groups; semi-stable quotients},
language = {eng},
number = {2},
pages = {233-248},
publisher = {Scuola normale superiore},
title = {Semistable quotients},
url = {http://eudml.org/doc/84327},
volume = {26},
year = {1998},
}

TY - JOUR
AU - Heinzner, Peter
AU - Migliorini, Luca
AU - Polito, Marzia
TI - Semistable quotients
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1998
PB - Scuola normale superiore
VL - 26
IS - 2
SP - 233
EP - 248
LA - eng
KW - complex reductive Lie groups; semi-stable quotients
UR - http://eudml.org/doc/84327
ER -

References

top
  1. [BB-S1] A. Bialynicki-Birula - J.A. Swiecicka, A reduction theorem for existence of good quotients, Amer. J. Math.113 (1990), 189-201. Zbl0741.14031
  2. [BB-S2] A. Bialynicki-Birula - J.A. Swiecicka, Three theorems on existence of good quotients, preprint 1995,1-11. 
  3. [B-M] E. Bierstone - P.D. Millman, Semianalytic and subanalytic sets, Publ. Math. IHES67 (1988), 5-42. Zbl0674.32002MR972342
  4. [H] P. Heinzner, Geometric invariant theory on Stein spaces, Math. Ann.289 (1991), 631-662. Zbl0728.32010MR1103041
  5. [H-H-K] P. Heinzner - A.T. Huckleberry - F. Kutzschebauch, Abels' Theorem in the real analytic case and applications to complexifications, In: Complex Analysis and Geometry, Lecture Notes in Pure and Applied Mathematics, Marcel Decker, 1995, 229-273. Zbl0861.32011MR1365977
  6. [H-L] P. Heinzner - F. Loose, Reduction of complex Hamiltonian G-spaces, Geom. Funct. Anal.4 (1994), 288-297. Zbl0816.53018MR1274117
  7. [H-M] P. Heinzner - L. Migliorini, Projectivity of moment map quotients, preprint 1996. Zbl0982.32020MR1824905
  8. [Hi] H. Hironaka, Subanalytic sets, In: Number Theory, Algebraic Geometry and Commutative Algebra in honor of Y. Akizuki, Kinokunuya, Tokyo, 1973, p. 453-493. Zbl0297.32008MR377101
  9. [Ho] G. Hochschild, The Structure of Lie groups, San Francisco, London, Amsterdam: Holden-Day, 1965. Zbl0131.02702MR207883
  10. [Hol] H. Holmann, Quotienten komplexer Räume, Math. Ann.142 (1961), 407-440. Zbl0097.28602MR120665
  11. [I] K. Iwasawa, On some types of topological groups, Ann. Math.50 (1949), 507-558. Zbl0034.01803MR29911
  12. [K] M. Koras, Linearization of reductive group actions, In: Group actions and vector fields. Lecture Notes in Mathematics956. Springer-Verlag, Berlin, Heidelberg, New York, 1982, p. 92-98. Zbl0519.32022MR704989
  13. [M-M] Y. Matsushima - A. Morimoto, Sur certains espaces fibrés holomorphes sur une variété de Stein, Bull. Soc. Math. France88 (1960), 137-155. Zbl0094.28104MR123739
  14. [Mu] D. Mumford - J. Fogarty, Geometric Invariant Theory, Ergeb. Math. 34, Springer-Verlag, Berlin, Heidelberg, New York, 1982. Zbl0504.14008MR719371
  15. [P] R.S. Palais, On the existence of slices for actions of non-compact Lie groups, Ann. Math.73 (1961), 295-323. Zbl0103.01802MR126506
  16. [R] M. Roberts, A note on coherent G-sheaves, Math. Ann.275 (1986), 573-582. Zbl0579.32013MR859331
  17. [Ro] M. Rosenlicht, Some basic theorems on algebraic groups, Amer. J. Math.78 (1956), 401-443. Zbl0073.37601MR82183
  18. [S] R. Sjamaar, Holomorphic slices, symplectic reduction and multiplicities of representations, Ann. Math.141 (1995), 87-129. Zbl0827.32030MR1314032
  19. [Sn] D.M. Snow, Reductive group actions on Stein Spaces, Math. Ann.259 (1982), 79-97. Zbl0509.32021MR656653

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.