Semistable quotients

Peter Heinzner; Luca Migliorini; Marzia Polito

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1998)

  • Volume: 26, Issue: 2, page 233-248
  • ISSN: 0391-173X

How to cite

top

Heinzner, Peter, Migliorini, Luca, and Polito, Marzia. "Semistable quotients." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 26.2 (1998): 233-248. <http://eudml.org/doc/84327>.

@article{Heinzner1998,
author = {Heinzner, Peter, Migliorini, Luca, Polito, Marzia},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {complex reductive Lie groups; semi-stable quotients},
language = {eng},
number = {2},
pages = {233-248},
publisher = {Scuola normale superiore},
title = {Semistable quotients},
url = {http://eudml.org/doc/84327},
volume = {26},
year = {1998},
}

TY - JOUR
AU - Heinzner, Peter
AU - Migliorini, Luca
AU - Polito, Marzia
TI - Semistable quotients
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1998
PB - Scuola normale superiore
VL - 26
IS - 2
SP - 233
EP - 248
LA - eng
KW - complex reductive Lie groups; semi-stable quotients
UR - http://eudml.org/doc/84327
ER -

References

top
  1. [BB-S1] A. Bialynicki-Birula - J.A. Swiecicka, A reduction theorem for existence of good quotients, Amer. J. Math.113 (1990), 189-201. Zbl0741.14031
  2. [BB-S2] A. Bialynicki-Birula - J.A. Swiecicka, Three theorems on existence of good quotients, preprint 1995,1-11. 
  3. [B-M] E. Bierstone - P.D. Millman, Semianalytic and subanalytic sets, Publ. Math. IHES67 (1988), 5-42. Zbl0674.32002MR972342
  4. [H] P. Heinzner, Geometric invariant theory on Stein spaces, Math. Ann.289 (1991), 631-662. Zbl0728.32010MR1103041
  5. [H-H-K] P. Heinzner - A.T. Huckleberry - F. Kutzschebauch, Abels' Theorem in the real analytic case and applications to complexifications, In: Complex Analysis and Geometry, Lecture Notes in Pure and Applied Mathematics, Marcel Decker, 1995, 229-273. Zbl0861.32011MR1365977
  6. [H-L] P. Heinzner - F. Loose, Reduction of complex Hamiltonian G-spaces, Geom. Funct. Anal.4 (1994), 288-297. Zbl0816.53018MR1274117
  7. [H-M] P. Heinzner - L. Migliorini, Projectivity of moment map quotients, preprint 1996. Zbl0982.32020MR1824905
  8. [Hi] H. Hironaka, Subanalytic sets, In: Number Theory, Algebraic Geometry and Commutative Algebra in honor of Y. Akizuki, Kinokunuya, Tokyo, 1973, p. 453-493. Zbl0297.32008MR377101
  9. [Ho] G. Hochschild, The Structure of Lie groups, San Francisco, London, Amsterdam: Holden-Day, 1965. Zbl0131.02702MR207883
  10. [Hol] H. Holmann, Quotienten komplexer Räume, Math. Ann.142 (1961), 407-440. Zbl0097.28602MR120665
  11. [I] K. Iwasawa, On some types of topological groups, Ann. Math.50 (1949), 507-558. Zbl0034.01803MR29911
  12. [K] M. Koras, Linearization of reductive group actions, In: Group actions and vector fields. Lecture Notes in Mathematics956. Springer-Verlag, Berlin, Heidelberg, New York, 1982, p. 92-98. Zbl0519.32022MR704989
  13. [M-M] Y. Matsushima - A. Morimoto, Sur certains espaces fibrés holomorphes sur une variété de Stein, Bull. Soc. Math. France88 (1960), 137-155. Zbl0094.28104MR123739
  14. [Mu] D. Mumford - J. Fogarty, Geometric Invariant Theory, Ergeb. Math. 34, Springer-Verlag, Berlin, Heidelberg, New York, 1982. Zbl0504.14008MR719371
  15. [P] R.S. Palais, On the existence of slices for actions of non-compact Lie groups, Ann. Math.73 (1961), 295-323. Zbl0103.01802MR126506
  16. [R] M. Roberts, A note on coherent G-sheaves, Math. Ann.275 (1986), 573-582. Zbl0579.32013MR859331
  17. [Ro] M. Rosenlicht, Some basic theorems on algebraic groups, Amer. J. Math.78 (1956), 401-443. Zbl0073.37601MR82183
  18. [S] R. Sjamaar, Holomorphic slices, symplectic reduction and multiplicities of representations, Ann. Math.141 (1995), 87-129. Zbl0827.32030MR1314032
  19. [Sn] D.M. Snow, Reductive group actions on Stein Spaces, Math. Ann.259 (1982), 79-97. Zbl0509.32021MR656653

NotesEmbed ?

top

You must be logged in to post comments.