The extended future tube conjecture for SO(1, )
Peter Heinzner[1]; Patrick Schützdeller[2]
- [1] Fakultät und Institut für Mathematik Ruhr-Universität Bochum Gebäude NA 4/74 D-44780 Bochum, Germany
- [2] Fakultät und Institut für Mathematik Ruhr-Universität Bochum Gebäude NA 4/69 D-44780 Bochum, Germany
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2004)
- Volume: 3, Issue: 1, page 39-52
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topHeinzner, Peter, and Schützdeller, Patrick. "The extended future tube conjecture for SO(1, ${\it {n}}$)." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 3.1 (2004): 39-52. <http://eudml.org/doc/84527>.
@article{Heinzner2004,
abstract = {Let $C$ be the open upper light cone in $\mathbb \{R\}^\{1+n\}$ with respect to the Lorentz product. The connected linear Lorentz group $ \{\rm SO\}_\mathbb \{R\}(1,n)^0$ acts on $C$ and therefore diagonally on the $N$-fold product $T^N$ where $T = \mathbb \{R\}^\{1+n\} + iC \subset \mathbb \{C\}^\{1+n\}.$ We prove that the extended future tube $\{\rm SO\}_\mathbb \{C\}(1,n)\cdot T^N$ is a domain of holomorphy.},
affiliation = {Fakultät und Institut für Mathematik Ruhr-Universität Bochum Gebäude NA 4/74 D-44780 Bochum, Germany; Fakultät und Institut für Mathematik Ruhr-Universität Bochum Gebäude NA 4/69 D-44780 Bochum, Germany},
author = {Heinzner, Peter, Schützdeller, Patrick},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {1},
pages = {39-52},
publisher = {Scuola Normale Superiore, Pisa},
title = {The extended future tube conjecture for SO(1, $\{\it \{n\}\}$)},
url = {http://eudml.org/doc/84527},
volume = {3},
year = {2004},
}
TY - JOUR
AU - Heinzner, Peter
AU - Schützdeller, Patrick
TI - The extended future tube conjecture for SO(1, ${\it {n}}$)
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2004
PB - Scuola Normale Superiore, Pisa
VL - 3
IS - 1
SP - 39
EP - 52
AB - Let $C$ be the open upper light cone in $\mathbb {R}^{1+n}$ with respect to the Lorentz product. The connected linear Lorentz group $ {\rm SO}_\mathbb {R}(1,n)^0$ acts on $C$ and therefore diagonally on the $N$-fold product $T^N$ where $T = \mathbb {R}^{1+n} + iC \subset \mathbb {C}^{1+n}.$ We prove that the extended future tube ${\rm SO}_\mathbb {C}(1,n)\cdot T^N$ is a domain of holomorphy.
LA - eng
UR - http://eudml.org/doc/84527
ER -
References
top- [B] R. Bremigan, Invariant analytic domains in complex semisimple groups, Transform. Groups 1 (1996), 279-305. Zbl0867.22004MR1424446
- [FK] J. Faraut – A. Koranyi, “Analysis on Symmetric Cones”, Oxford Press, Oxford, 1994. Zbl0841.43002MR1446489
- [HW] D. Hall – A. D. Wightman, A theorem on invariant analytic functions with applications to relativistic quantum field theory, Kgl. Danske Videnskap. Selkap, Mat.-Fys. Medd. 31 (1965) 1-14. Zbl0078.44302
- [He1] P. Heinzner, Geometric invariant theory on Stein spaces, Math. Ann. 289 (1991), 631-662. Zbl0728.32010MR1103041
- [He2] P. Heinzner, The minimum principle from a Hamiltonian point of view, Doc. Math. J. 3 (1998), 1-14. Zbl0939.32021MR1620612
- [HeHuL] P. Heinzner – A. T. Huckleberry – F. Loose, Kählerian extensions of the symplectic reduction, J. reine angew. Math. 455 (1994), 123-140. Zbl0803.53042MR1293876
- [HeMP] P. Heinzner – L. Migliorini – M. Polito, Semistable quotients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 26 (1998), 233-248. Zbl0922.32017MR1631577
- [J] R. Jost, The general theory of quantized fields, In: “Lectures in applied mathematics”, vol. IV, 1965. Zbl0127.19105MR177667
- [Kr] H. Kraft, Geometrische Methoden in der Invariantentheorie, In: “Aspects of Mathematics”, Vieweg Verlag, 1984. Zbl0569.14003MR768181
- [N] R. Narasimhan, The Levi Problem for Complex Spaces II, Math. Ann. 146 (1962), 195-216. Zbl0131.30801MR182747
- [SV] A. G. Sergeev – V. S. Vladimirov, Complex analysis in the future tube, In: “Encyclopaedia of mathematical sciences” (Several complex variables II) vol. 8 (1994), 179–253. Zbl0787.32001
- [StW] R. F. Streater – A. S. Wightman, “PCT spin statistics, and all that”, W. A. Benjamin, INC., 1964. Zbl0135.44305MR161603
- [W] A. S. Wightman, Quantum field theory and analytic functions of several complex variables, J. Indian Math. Soc. 24 (1960), 625-677. Zbl0105.22101MR149854
- [Z] X. Y. Zhou, A proof of the extended future tube conjecture, Izv. Math. 62 (1998), 201-213. Zbl0922.32007MR1622270
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.