Soluzioni periodiche di PDEs Hamiltoniane
Bollettino dell'Unione Matematica Italiana (2004)
- Volume: 7-B, Issue: 3, page 647-661
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topBerti, Massimiliano. "Soluzioni periodiche di PDEs Hamiltoniane." Bollettino dell'Unione Matematica Italiana 7-B.3 (2004): 647-661. <http://eudml.org/doc/195679>.
@article{Berti2004,
abstract = {Presentiamo nuovi risultati di esistenza e molteplicità di soluzioni periodiche di piccola ampiezza per equazioni alle derivate parziali Hamiltoniane. Otteniamo soluzioni periodiche di equazioni «completamente risonanti» aventi nonlinearità generali grazie ad una riduzione di tipo Lyapunov-Schmidt variazionale ed usando argomenti di min-max. Per equazioni «non risonanti» dimostriamo l'esistenza di soluzioni periodiche di tipo Birkhoff-Lewis, mediante un'opportuna forma normale di Birkhoff e realizzando nuovamente una riduzione di tipo Lyapunov-Schmidt.},
author = {Berti, Massimiliano},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {ita},
month = {10},
number = {3},
pages = {647-661},
publisher = {Unione Matematica Italiana},
title = {Soluzioni periodiche di PDEs Hamiltoniane},
url = {http://eudml.org/doc/195679},
volume = {7-B},
year = {2004},
}
TY - JOUR
AU - Berti, Massimiliano
TI - Soluzioni periodiche di PDEs Hamiltoniane
JO - Bollettino dell'Unione Matematica Italiana
DA - 2004/10//
PB - Unione Matematica Italiana
VL - 7-B
IS - 3
SP - 647
EP - 661
AB - Presentiamo nuovi risultati di esistenza e molteplicità di soluzioni periodiche di piccola ampiezza per equazioni alle derivate parziali Hamiltoniane. Otteniamo soluzioni periodiche di equazioni «completamente risonanti» aventi nonlinearità generali grazie ad una riduzione di tipo Lyapunov-Schmidt variazionale ed usando argomenti di min-max. Per equazioni «non risonanti» dimostriamo l'esistenza di soluzioni periodiche di tipo Birkhoff-Lewis, mediante un'opportuna forma normale di Birkhoff e realizzando nuovamente una riduzione di tipo Lyapunov-Schmidt.
LA - ita
UR - http://eudml.org/doc/195679
ER -
References
top- AMBROSETTI, A.- COTI ZELATI, V.- EKELAND, I., Symmetry breaking in Hamiltonian systems, Journal Diff. Equat., 67 (1987), 165-184. Zbl0606.58043MR879691
- AMBROSETTI, A.- RABINOWITZ, P., Dual Variational Methods in Critical Point Theory and Applications, Journ. Func. Anal, 14 (1973), 349-381. Zbl0273.49063MR370183
- BAMBUSI, D., Lyapunov Center Theorems for some nonlinear PDEs: a simple proof, Ann. Sc. Norm. Sup. di Pisa, Ser. IV, vol. XXIX, fasc. 4, 2000. Zbl1008.35003
- BAMBUSI, D.- BERTI, M., A Birkhoof-Lewis type Theorem for some Hamiltonian PDEs, preprint SISSA, available at http://www.math.utexas.edu/mp-arc. Zbl1105.37045MR2176924
- BAMBUSI, D., Birkhoff normal form for some nonlinear PDEs, Commun. Math. Phys., 234 (2003), 253-285. Zbl1032.37051MR1962462
- BAMBUSI, D.- GREBERT, B., Forme normale pour NLS en dimension quelconque, C.R. Acad. Sci. Paris Ser., 1, 337 (2003), 409-414. Zbl1030.35143MR2015085
- BAMBUSI, D.- PALEARI, S., Families of periodic solutions of resonant PDEs, J. Nonlinear Sci., 11 (2001), 69-87. Zbl0994.37040MR1819863
- BAMBUSI, D.- PALEARI, S., Families of periodic orbits for some PDE's in higher dimensions, Comm. Pure and Appl. Analysis, Vol. 1, n. 4, 2002. Zbl1034.35081MR1938615
- BIASCO, L.- CHIERCHIA, L.- VALDINOCI, E., Elliptic two-dimensional invariant tori for the planetary three-body problem, 170, n. 2 (2003), 91-135. Zbl1036.70006MR2017886
- BERTI, M.- BIASCO, L.- VALDINOCI, E., Periodic orbits close to elliptic tori and applications to the three body problem, to appear on Ann. Sc. Norm. Sup. di Pisa, 2004. Zbl1121.37047MR2064969
- BERTI, M.- BOLLE, P., Periodic solutions of Nonlinear wave equations with general nonlineairties, Commun. Math. Phys., 243 (2003), 315-328. Zbl1072.35015MR2021909
- BERTI, M.- BOLLE, P., Multiplicity of periodic solutions of Nonlinear wave equations, Nonlinear Analysis, TMA, 56 n. 7 (2004), 1011-1046. Zbl1064.35119MR2038735
- BIRKHOOF, G. D.- LEWIS, D. C., On the periodic motions near a given periodic motion of a dynamical system, Ann. Mat., 12 (1934), 117-133. MR1553217JFM59.0733.05
- BOURGAIN, J., Construction of periodic solutions of nonlinear wave equations in higher dimension, Geom. and Func. Anal., vol. 5, n. 4, 1995. Zbl0834.35083MR1345016
- BOURGAIN, J., Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations, Ann. of Math., 148 (1998), 363-439. Zbl0928.35161MR1668547
- CHIERCHIA, L.- YOU, J., KAM tori for 1D nonlinear wave equations with periodic boundary conditions, Comm. Math. Phys., 211, no. 2 (2000), 497-525. Zbl0956.37054MR1754527
- CONLEY, C.- ZEHNDER, E., An index theory for periodic solutions of a Hamiltonian system, Lecture Notes in Mathematics1007, Springer, 1983, 132-145. Zbl0528.34043MR730268
- CRAIG, W., Problèmes de petits diviseurs dans les équations aux dérivées partielles, Panoramas et Synthèses, 9, Société Mathématique de France, Paris, 2000. Zbl0977.35014MR1804420
- CRAIG, W.- WAYNE, E., Newton's method and periodic solutions of nonlinear wave equation, Comm. Pure and Appl. Math, vol. XLVI (1993), 1409-1498. Zbl0794.35104MR1239318
- CRAIG, W.- WAYNE, E., Nonlinear waves and the resonance, Singular limits of dispersive waves (Lyon, 1991), 297-313, NATO Adv. Sci. Inst. Ser. B Phys., 320, Plenum, New York, 1994. Zbl0849.35133MR1321211
- FADELL, E. R.- RABINOWITZ, P., Generalized cohomological index theories for the group actions with an application to bifurcations question for Hamiltonian systems, Inv. Math., 45 (1978), 139-174. Zbl0403.57001MR478189
- GENTILE, G.- MASTROPIETRO, V., Construction of periodic solutions of the nonlinear wave equation with Dirichlet boundary conditions by the Lindstedt series method, to appear on Journal Math. Pures Appl. Zbl1065.35028MR2082491
- LEWIS, D. C., Sulle oscillazioni periodiche di un sistema dinamico, Atti Acc. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Nat., 19 (1934), 234-237. Zbl0009.08903
- LYAPUNOV, A. M., Problème général de la stabilité du mouvement, Ann. Sc. Fac. Toulouse, 2 (1907), 203-474. MR21186
- LIDSKIJ, B. V.- SHULMAN, E. I., Periodic solutions of the equation , Funct. Anal. Appl., 22 (1980), 332-333. Zbl0837.35012
- KUKSIN, S. B., Perturbation of conditionally periodic solutions of infinite-dimensional Hamiltonian systems, Izv. Akad. Nauk SSSR, Ser. Mat.52, no. 1 (1988), 41-63. Zbl0662.58036MR936522
- MOSER, J., Periodic orbits near an Equilibrium and a Theorem by Alan Weinstein, Comm. on Pure and Appl. Math., vol. XXIX, 1976. Zbl0346.34024MR426052
- MOSER, J., Proof of a generalized form of a fixed point theorem due to G. D. Birkhoof, Geometry and Topology, Lectures Notes in Math., 597 (1977), 464-494. Zbl0358.58009MR494305
- POINCARÉ, H., Les Méthodes nouvelles de la Mécanique Céleste, Gauthier Villars, Paris, 1892. JFM30.0834.08
- PÖSCHEL, J., A KAM-Theorem for some nonlinear PDEs, Ann. Scuola Norm. Sup. Pisa, Cl. Sci., 23 (1996), 119-148. Zbl0870.34060MR1401420
- PÖSCHEL, J., On the construction of almost periodic solutions for a nonlinear Schrödinger equation, Ergodic Theory Dynam. Systems, 22 (2002), 1537-1549. Zbl1020.37044MR1934149
- RABINOWITZ, P., Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics, 65. Zbl0609.58002MR845785
- WAYNE, E., Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Commun. Math. Phys., 127, no. 3 (1998), 479-528. Zbl0708.35087MR1040892
- WEINSTEIN, A., Normal modes for Nonlinear Hamiltonian Systems, Inv. Math, 20 (1973), 47-57. Zbl0264.70020MR328222
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.