Improved estimates for the Ginzburg-Landau equation : the elliptic case
Fabrice Bethuel[1]; Giandomenico Orlandi[2]; Didier Smets[3]
- [1] Laboratoire Jacques-Louis Lions Université de Paris 6 4 place Jussieu BC 187 75252 Paris, France
- [2] Dipartimento di Informatica Università di Verona strada le Grazie 37134 Verona, Italy
- [3] Centro di Ricerca Matematica Ennio De Giorgi Scuola Normale Superiore di Pisa Piazza dei Cavalieri 3 56100 Pisa, Italy
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2005)
- Volume: 4, Issue: 2, page 319-355
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topBethuel, Fabrice, Orlandi, Giandomenico, and Smets, Didier. "Improved estimates for the Ginzburg-Landau equation : the elliptic case." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 4.2 (2005): 319-355. <http://eudml.org/doc/84562>.
@article{Bethuel2005,
abstract = {We derive estimates for various quantities which are of interest in the analysis of the Ginzburg-Landau equation, and which we bound in terms of the $GL$-energy $E_\varepsilon $ and the parameter $\varepsilon $. These estimates are local in nature, and in particular independent of any boundary condition. Most of them improve and extend earlier results on the subject.},
affiliation = {Laboratoire Jacques-Louis Lions Université de Paris 6 4 place Jussieu BC 187 75252 Paris, France; Dipartimento di Informatica Università di Verona strada le Grazie 37134 Verona, Italy; Centro di Ricerca Matematica Ennio De Giorgi Scuola Normale Superiore di Pisa Piazza dei Cavalieri 3 56100 Pisa, Italy},
author = {Bethuel, Fabrice, Orlandi, Giandomenico, Smets, Didier},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {2},
pages = {319-355},
publisher = {Scuola Normale Superiore, Pisa},
title = {Improved estimates for the Ginzburg-Landau equation : the elliptic case},
url = {http://eudml.org/doc/84562},
volume = {4},
year = {2005},
}
TY - JOUR
AU - Bethuel, Fabrice
AU - Orlandi, Giandomenico
AU - Smets, Didier
TI - Improved estimates for the Ginzburg-Landau equation : the elliptic case
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2005
PB - Scuola Normale Superiore, Pisa
VL - 4
IS - 2
SP - 319
EP - 355
AB - We derive estimates for various quantities which are of interest in the analysis of the Ginzburg-Landau equation, and which we bound in terms of the $GL$-energy $E_\varepsilon $ and the parameter $\varepsilon $. These estimates are local in nature, and in particular independent of any boundary condition. Most of them improve and extend earlier results on the subject.
LA - eng
UR - http://eudml.org/doc/84562
ER -
References
top- [1] D. Adams, A Trace inequality for generalized potentials, Studia Math. 48 (1973), 99–105. Zbl0237.46037MR336316
- [2] D. Adams, Weighted nonlinear potential theory, Trans. Amer. Math. Soc. 297 (1986), 73–94. Zbl0656.31012MR849468
- [3] G. Alberti, S. Baldo and G. Orlandi, Variational convergence for functionals of Ginzburg-Landau type, Indiana Univ. Math. J., to appear Zbl1160.35013MR2177107
- [4] L. Ambrosio and M. Soner, A measure theoretic approach to higher codimension mean curvature flow, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25 (1997), 27–49. Zbl1043.35136MR1655508
- [5] F. Bethuel, J. Bourgain, H. Brezis and G. Orlandi, estimates for solutions to the Ginzburg-Landau equations with boundary data in , C.R. Acad. Sci. Paris Sér. I Math. 333 (2001), 1–8. Zbl1080.35020MR1881236
- [6] F. Bethuel, H. Brezis and F. Hélein, Asymptotics for the minimization of a Ginzburg-Landau functional, Calc. Var. Partial Differential Equations 1 (1993), 123–148. Zbl0834.35014MR1261720
- [7] F. Bethuel, H. Brezis and F. Hélein, “Ginzburg-Landau vortices”, Birkhäuser, Boston, 1994. Zbl0802.35142MR1269538
- [8] F. Bethuel, H. Brezis and G. Orlandi, Asymptotics for the Ginzburg-Landau equation in arbitrary dimensions, J. Funct. Anal. 186 (2001), 432–520. Erratum 188 (2002), 548–549. Zbl1077.35047MR1864830
- [9] F. Bethuel and G. Orlandi, Uniform estimates for the parabolic Ginzburg-Landau equation, ESAIM Control Optim. Calc. Var. 9 (2002), 219–238. Zbl1078.35013MR1932951
- [10] F. Bethuel, G. Orlandi and D. Smets, Vortex rings for the Gross-Pitaevskii equation, J. Eur. Math. Soc. 6 (2004), 17–94. Zbl1091.35085MR2041006
- [11] F. Bethuel, G. Orlandi and D. Smets, Convergence of the parabolic Ginzburg-Landau equation to motion by mean curvature, Ann. of Math., to appear Zbl1103.35038MR1988309
- [12] F. Bethuel, G. Orlandi and D. Smets, Motion of concentration sets in Ginzburg-Landau equations, Ann. Sci. Fac. Toulouse 13 (2004), 3–43. Zbl1063.35075MR2060028
- [13] F. Bethuel, G. Orlandi and D. Smets, Approximations with vorticity bounds for the Ginzburg-Landau functional, Commun. Contemp. Math. 6 (2004), 803–832. Zbl1129.35329MR2100765
- [14] F. Bethuel, G. Orlandi and D. Smets, Collisions and phase-vortex interactions in dissipative Ginzburg-Landau dynamics, Duke Math. J., to appear. Zbl1087.35008MR2184569
- [15] F. Bethuel and T. Rivière, A minimization problem related to superconductivity, Ann. Inst. H. Poincaré Anal. Non Linéaire 12 (1995), 243–303. Zbl0842.35119MR1340265
- [16] J. Bourgain and H. Brezis, New estimates for the Laplacian, the div-curl and related Hodge systems, C.R. Acad. Sci. Paris Sér. I Math. 338 (2004), 539–543. Zbl1101.35013MR2057026
- [17] J. Bourgain, H. Brezis and P. Mironescu, On the structure of the Sobolev space with values in the circle, C.R. Acad. Sci. Paris Série I 331 (2000), 119–124. Zbl0970.35069MR1781527
- [18] J. Bourgain, H. Brezis and P. Mironescu, maps with values into the circle: minimal connections, lifting and the Ginzburg-Landau equation, Inst. Hantes Études Sci. Publ. Math. 99 (2004), 1–115. Zbl1051.49030MR2075883
- [19] K. Brakke, “The motion of a surface by its mean curvature”, Princeton University Press, Princeton, 1978. Zbl0386.53047MR485012
- [20] H. Brezis and P. Mironescu, Sur une conjecture de E. De Giorgi relative à l’énergie de Ginzburg-Landau, C. R. Acad. Sci. Paris Série I Math. 319 (1994), 167–170. Zbl0805.49004MR1288397
- [21] Y. Chen and M. Struwe, Existence and partial regularity results for the heat flow for harmonic maps, Math. Z. 201 (1989), 83–103. Zbl0652.58024MR990191
- [22] D. Chiron, Boundary problems for the Ginzburg-Landau equation, Comm. Contemp. Math., to appear. Zbl1124.35081MR2175092
- [23] R. Coifman, P. L. Lions, Y. Meyer and S. Semmes, Compensated compactness and Hardy spaces J. Math. Pures Appl. 72 (1993), 247–286. Zbl0864.42009MR1225511
- [24] M. Comte and P. Mironescu, The behavior of a Ginzburg-Landau minimizer near its zeroes, Calc. Var. Partial Differential Equations 4 (1996), 323–340. Zbl0869.35036MR1393268
- [25] R. Hervé, and M. Hervé, Etude qualitative des solutions réelles d’une équation différentielle liée à l’équation de Ginzburg-Landau, Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994), 427–440. Zbl0836.34090MR1287240
- [26] L. Hedberg and T. Wolff, Thin sets in nonlinear potential theory, Ann. Inst. Fourier (Grenoble) 23 (1983), 161–187. Zbl0508.31008MR727526
- [27] T. Ilmanen, Convergence of the Allen-Cahn equation to Brakke’s motion by mean curvature, J. Differential Geom. 38 (1993), 417–461. Zbl0784.53035MR1237490
- [28] R. L. Jerrard and H. M. Soner, The Jacobian and the Ginzburg-Landau energy, Calc. Var. Partial Differential Equations 14 (2002), 151–191. Zbl1034.35025MR1890398
- [29] F. H. Lin and T. Rivière, Complex Ginzburg-Landau equations in high dimensions and codimension two area minimizing currents, J. Eur. Math. Soc. 1 (1999), 237–311. Erratum, J. Eur. Math. Soc. 2 (2000), 87–91. Zbl0939.35056MR1750451
- [30] F. H. Lin and T. Rivière, A quantization property for static Ginzburg-Landau vortices, Comm. Pure Appl. Math. 54 (2001), 206–228. Zbl1033.58013MR1794353
- [31] B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1974), 261–274. Zbl0289.26010MR340523
- [32] D. Preiss, Geometry of measures in : distribution, rectifiability, and densities, Ann. of Math. 125 (1987), 537-643. Zbl0627.28008MR890162
- [33] T. Rivière, Line vortices in the Higgs model, ESAIM Control Optim. Calc. Var. 1 (1996), 77–167. Zbl0874.53019MR1394302
- [34] R. Schoen and S. T. Yau, “Lectures on harmonic maps”, International Press, Cambridge, MA, 1997. Zbl0886.53004MR1474501
- [35] L. Simon, Lectures on Geometric Measure Theory, Proc. of the centre for Math. Anal., Austr. Nat. Univ., 1983. Zbl0546.49019MR756417
- [36] M. Struwe, On the asymptotic behavior of minimizers of the Ginzburg-Landau model in dimensions, Differential Integral Equations 7 (1994), 1613–1624. Zbl0809.35031MR1269674
- [37] J. Van Schaftingen, A simple proof of an inequality of Bourgain, Brezis and Mironescu, C.R. Acad. Sci. Paris, Sér. 1 Math. 338 (2004), 23–26. Zbl1188.26015MR2038078
- [38] W. P. Ziemer, “Weakly differentiable functions. Sobolev spaces and functions of bounded variation”, Graduate Texts in Math. 120, Springer Verlag, New York, 1989. Zbl0692.46022MR1014685
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.