Une nouvelle réalisation des espaces hermitiens symétriques

Michel Lassalle

Bulletin de la Société Mathématique de France (1983)

  • Volume: 111, page 181-192
  • ISSN: 0037-9484

How to cite

top

Lassalle, Michel. "Une nouvelle réalisation des espaces hermitiens symétriques." Bulletin de la Société Mathématique de France 111 (1983): 181-192. <http://eudml.org/doc/87436>.

@article{Lassalle1983,
author = {Lassalle, Michel},
journal = {Bulletin de la Société Mathématique de France},
keywords = {hermitian symmetric space; Jordan invertible elements; bounded symmetric circular domain; biholomorphic automorphisms; Shilov boundary; Siegel domain; K-homogeneous fibre space; polar decomposition in Jordan algebras},
language = {fre},
pages = {181-192},
publisher = {Société mathématique de France},
title = {Une nouvelle réalisation des espaces hermitiens symétriques},
url = {http://eudml.org/doc/87436},
volume = {111},
year = {1983},
}

TY - JOUR
AU - Lassalle, Michel
TI - Une nouvelle réalisation des espaces hermitiens symétriques
JO - Bulletin de la Société Mathématique de France
PY - 1983
PB - Société mathématique de France
VL - 111
SP - 181
EP - 192
LA - fre
KW - hermitian symmetric space; Jordan invertible elements; bounded symmetric circular domain; biholomorphic automorphisms; Shilov boundary; Siegel domain; K-homogeneous fibre space; polar decomposition in Jordan algebras
UR - http://eudml.org/doc/87436
ER -

References

top
  1. [0] BRAUN (H.) et KOECHER (M.). — Jordan Algebren, Springer, 1966. Zbl0145.26001MR34 #4310
  2. [1] HARISH-CHANDRA. — Representations of Semi-Simple Lie Groups VI, Amer. J. Math., vol. 78, 1956, p. 564-628. Zbl0072.01702
  3. [2] HELGASON (S.). — Differential Geometry, Lie Groups and Symmetric Spaces, New York, Academic Press, 1978. Zbl0451.53038
  4. [3] KORÁNYI (A.) et VÁGI (S.). — Rational Inner Functions on Bounded Symmetric Domains, Trans. A.M.S., vol. 254, 1979, p. 179-193. Zbl0439.32006MR80h:32062
  5. [4] KORÁNYI (A.) et WOLF (J.). — Realization of Hermitian Symmetric Spaces as Generalized Half-Planes, Ann. of Math., vol. 81, 1965, p. 265-288. Zbl0137.27402MR30 #4980
  6. [5] LASSALLE (M.). — Les orbites d'un espace hermitien symétrique compact, Inventiones Math., vol. 52, 1979, p. 199-239. Zbl0427.32026MR80k:32034
  7. [6] LASSALLE (M.). — Algèbres de Jordan, coordonnées polaires et équations de Hua, C. R. Acad. Sc. Paris, t. 294, série I, 1982, p. 613-615. Zbl0524.32019MR84b:32047
  8. [7] LOOS (O.). — Symmetric Spaces, vol. I, Benjamin, 1969. Zbl0175.48601MR39 #365a
  9. [8] MOORE (C.). — Compactifications of Symmetric Spaces II, The Cartan Domains, Amer. J. Math., vol. 86, 1964, p. 358-378. Zbl0156.03202MR28 #5147

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.