Torelli theorem for surfaces with p g = c 1 2 = 1 and K ample and with certain type of automorphism

Sampei Usui

Compositio Mathematica (1982)

  • Volume: 45, Issue: 3, page 293-314
  • ISSN: 0010-437X

How to cite

top

Usui, Sampei. "Torelli theorem for surfaces with $p_g = c^2_1 = 1$ and $K$ ample and with certain type of automorphism." Compositio Mathematica 45.3 (1982): 293-314. <http://eudml.org/doc/89537>.

@article{Usui1982,
author = {Usui, Sampei},
journal = {Compositio Mathematica},
keywords = {moduli spaces; period mapping; automorphisms of surfaces; global Torelli theorem},
language = {eng},
number = {3},
pages = {293-314},
publisher = {Martinus Nijhoff Publishers},
title = {Torelli theorem for surfaces with $p_g = c^2_1 = 1$ and $K$ ample and with certain type of automorphism},
url = {http://eudml.org/doc/89537},
volume = {45},
year = {1982},
}

TY - JOUR
AU - Usui, Sampei
TI - Torelli theorem for surfaces with $p_g = c^2_1 = 1$ and $K$ ample and with certain type of automorphism
JO - Compositio Mathematica
PY - 1982
PB - Martinus Nijhoff Publishers
VL - 45
IS - 3
SP - 293
EP - 314
LA - eng
KW - moduli spaces; period mapping; automorphisms of surfaces; global Torelli theorem
UR - http://eudml.org/doc/89537
ER -

References

top
  1. [1] D. Burns and M. Rapoport: On the Torelli problems for Kählerian K-3 surfaces. Ann, scient. Éc. Norm. Sup.4e sér. 8-2 (1975) 235-274. Zbl0324.14008MR447635
  2. [2] F. Catanese: Surfaces with K2 = pg = 1 and their period mapping. Proc. Summer Meeting on Algebraic Geometry, Copenhagen1978, Lecture Notes in Math. No 732, Springer Verlag, 1-29. Zbl0423.14019
  3. [3] A. Fujiki and S. Nakano; Supplement to "On the inverse of Monoidal Transformation", Publ. R.I.M.S. Kyoto Univ.7 (1972) 637-644. Zbl0234.32019MR294712
  4. [4] D. Gieseker: Global moduli for surfaces of general type. Invent. Math.43 (1977) 233-282. Zbl0389.14006MR498596
  5. [5] P. Griffiths: Periods of integrals on algebraic manifolds I, II, III: Amer. J. Math.90 (1968) 568-626; 805-865; Publ. Math. I.H.E.S.38 (1970) 125-180. Zbl0212.53503
  6. [6] F.I. Kĭnev: A simply connected surface of general type for which the local Torelli theorem does not hold (Russian). Cont. Ren. Acad. Bulgare des Sci.30-3 (1977) 323-325. Zbl0363.14005MR441981
  7. [7] E. Looijenga and C. Peters: Torelli theorems for Kähler K3 surfaces, Comp. Math.42-2 (1981) 145-186. Zbl0477.14006MR596874
  8. [8] I. Piateckiĭ-Šapiro and I.R. Šafarevič: A Torelli theorem for algebraic surfaces of type K-3, Izv. Akad. Nauk.35 (1971) 530-572. MR284440
  9. [9] A.N. Todorov: Surfaces of general type with pg = 1 and (K, K) = 1. I, Ann. scient. Éc. Norm. Sup.4e sér. 13-1 (1980) 1-21. Zbl0478.14030
  10. [10] S. Usui: Period map of surfaces with pg = c21= 1 and K ample. Mem. Fac. Sci. Kochi Univ. (Math.)2 (1981) 37-73. Zbl0487.14007MR602105
  11. [11] S. Usui: Effect of automorphisms on variation of Hodge structure. J. Math. Kyoto Univ.21-4 (1981). Zbl0497.14003MR637511
  12. [12] F. Catanese: The moduli and the global period mapping of surfaces with K2 = pg = 1: A counterexample to the global Torelli problem, Comp. Math.41-3 (1980) 401-414. Zbl0444.14008MR589089

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.