Displaying similar documents to “Asymptotics of accessibility sets along an abnormal trajectory”

Receding horizon optimal control for infinite dimensional systems

Kazufumi Ito, Karl Kunisch (2002)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

The receding horizon control strategy for dynamical systems posed in infinite dimensional spaces is analysed. Its stabilising property is verified provided control Lyapunov functionals are used as terminal penalty functions. For closed loop dissipative systems the terminal penalty can be chosen as quadratic functional. Applications to the Navier–Stokes equations, semilinear wave equations and reaction diffusion systems are given.

Well-posedness and sliding mode control

Tullio Zolezzi (2005)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

Sliding mode control of ordinary differential equations is considered. A key robustness property, called approximability, is studied from an optimization point of view. It is proved that Tikhonov well-posedness of a suitably defined optimization problem is intimately related to approximability. Making use of this link, new approximability criteria are obtained for nonlinear sliding mode control systems.

Coplanar control of a satellite around the earth

Jean-Baptiste Caillau, Joseph Noailles (2001)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We investigate the minimum time transfer of a satellite around the Earth. Using an optimal control model, we study the controllability of the system and propose a geometrical analysis of the optimal command structure. Furthermore, in order to solve the problem numerically, a new parametric technique is introduced for which convergence properties are established.

Control problems for convection-diffusion equations with control localized on manifolds

Phuong Anh Nguyen, Jean-Pierre Raymond (2001)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We consider optimal control problems for convection-diffusion equations with a pointwise control or a control localized on a smooth manifold. We prove optimality conditions for the control variable and for the position of the control. We do not suppose that the coefficient of the convection term is regular or bounded, we only suppose that it has the regularity of strong solutions of the Navier–Stokes equations. We consider functionals with an observation on the gradient of the state....

Feedback in state constrained optimal control

Francis H. Clarke, Ludovic Rifford, R. J. Stern (2002)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

An optimal control problem is studied, in which the state is required to remain in a compact set S . A control feedback law is constructed which, for given ε > 0 , produces ε -optimal trajectories that satisfy the state constraint universally with respect to all initial conditions in S . The construction relies upon a constraint removal technique which utilizes geometric properties of inner approximations of S and a related trajectory tracking result. The control feedback is shown to possess...