On the structure of linear recurrent error-control codes
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 8, page 703-713
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topFliess, Michel. "On the structure of linear recurrent error-control codes." ESAIM: Control, Optimisation and Calculus of Variations 8 (2010): 703-713. <http://eudml.org/doc/90667>.
@article{Fliess2010,
abstract = {
We are extending to linear recurrent codes, i.e., to
time-varying convolutional codes, most of the classic structural
properties of fixed convolutional codes. We are also proposing a
new connection between fixed convolutional codes and linear block
codes. These results are obtained thanks to a module-theoretic
framework which has been previously developed for linear control.
},
author = {Fliess, Michel},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Convolutional codes; linear recurrent codes; block
codes; transducers; encoders; feedback decoding; linear systems;
controllability; observability; input-output inversion; modules.; convolutional codes; block codes; controllability; modules},
language = {eng},
month = {3},
pages = {703-713},
publisher = {EDP Sciences},
title = {On the structure of linear recurrent error-control codes},
url = {http://eudml.org/doc/90667},
volume = {8},
year = {2010},
}
TY - JOUR
AU - Fliess, Michel
TI - On the structure of linear recurrent error-control codes
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 8
SP - 703
EP - 713
AB -
We are extending to linear recurrent codes, i.e., to
time-varying convolutional codes, most of the classic structural
properties of fixed convolutional codes. We are also proposing a
new connection between fixed convolutional codes and linear block
codes. These results are obtained thanks to a module-theoretic
framework which has been previously developed for linear control.
LA - eng
KW - Convolutional codes; linear recurrent codes; block
codes; transducers; encoders; feedback decoding; linear systems;
controllability; observability; input-output inversion; modules.; convolutional codes; block codes; controllability; modules
UR - http://eudml.org/doc/90667
ER -
References
top- C. Berrou and A. Glavieux, Near-optimum error-correcting coding and decoding: Turbo-codes. IEEE Trans. Communicat.44 (1996) 1261-1271.
- R.E. Blahut, Theory and Practice of Error Control Codes. Addison-Wesley (1983).
- N. Bourbaki, Algèbre, Chap. 2. Hermann (1970).
- G. Cohen, J.-L. Dornstetter and P. Godlewski, Codes correcteurs d'erreurs. Masson (1992).
- R.M. Cohn, Difference Algebra. Interscience (1965).
- A. Dholakia, Introduction to Convolutional Codes with Applications. Kluwer (1994).
- F. Fagnani and S. Zampieri, System-theoretic properties of convolutional codes over rings. IEEE Trans. Inform. Theory47 (2001) 2256-2274.
- M. Fliess, Automatique en temps discret et algèbre aux différences. Forum Math.2 (1990) 213-232.
- M. Fliess, Some basic structural properties of generalized linear systems. Systems Control Lett.15 (1990) 391-396.
- M. Fliess, A remark on Willems' trajectory characterization of linear controllability. Systems Control Lett.19 (1992) 43-45.
- M. Fliess, Reversible linear and nonlinear discrete-time dynamics. IEEE Trans. Automat. Control37 (1992) 1144-1153.
- M. Fliess, Une interprétation algébrique de la transformation de Laplace et des matrices de transfert. Linear Algebra Appl.203-204 (1994) 429-442.
- M. Fliess, Variations sur la notion de contrôlabilité, in Journée Soc. Math. France. Paris (2000) 47-86.
- M. Fliess and H. Bourlès, Discussing some examples of linear system interconnections. Systems Control Lett.27 (1996) 1-7.
- M. Fliess, J. Lévine, P. Martin and P. Rouchon, Flatness and defect of non-linear systems: Introductory theory and applications. Internat. J. Control61 (1995) 1327-1361.
- M. Fliess and R. Marquez, Continuous-time linear predictive control and flatness: A module-theoretic setting with examples. Internat. J. Control73 (2000) 606-623.
- M. Fliess and R. Marquez, Une approche intrinsèque de la commande prédictive linéaire discrète. APII J. Europ. Syst. Automat.35 (2001) 127-147.
- M. Fliess, R. Marquez, E. Delaleau and H. Sira-Ramírez, Correcteurs proportionnels-intégraux généralisés. ESAIM: COCV7 (2002) 23-41.
- M. Fliess, R. Marquez and H. Mounier, An extension of predictive control, PID regulators and Smith predictors to some linear delay systems. Internat. J. Control (to appear).
- M. Fliess and H. Mounier, Controllability and observability of linear delay systems: An algebraic approach. ESAIM: COCV3 (1998) 301-314.
- G.D. Forney Jr., Convolutional codes I: Algebraic structure. IEEE Trans. Inform. Theory16 (1970) 720-738.
- G.D. Forney Jr., Minimal bases of rational vector spaces, with applications to multivariable linear systems. SIAM J. Control13 (1975) 493-520.
- G.D. Forney Jr., Algebraic structure of convolutional codes and algebraic system theory, in Mathematical System Theory - The Influence of R.E. Kalman, edited by A.C. Antoulas. Springer (1991) 527-557.
- G.D. Forney Jr. and M.D. Trott, The dynamics of group codes: State-space, trellis diagrams and canonical encoders. IEEE Trans. Inform. Theory39 (1993) 1491-1513.
- G.D. Forney Jr., B. Marcus, N.T. Sindhushayana and M. Trott, A multilingual dictionary: System theory, coding theory, symbolic dynamics and automata theory, in Different Aspects of Coding Theory. Proc. Symp. Appl. Math.50; Amer. Math. Soc. (1995) 109-138.
- R. Johannesson and K.Sh. Zigangirov, Fundamentals of Convolutional Coding. IEEE Press (1999).
- T. Kailath, Linear Systems. Prentice-Hall (1979).
- E.W. Kamen, P.P. Khargonekar and K.R. Poola, A transfer-function approach to linear time-varying discrete-time systems. SIAM J. Control Optim.23 (1985) 550-565.
- T.Y. Lam, Lectures on Rings and Modules. Springer (1999).
- S. Lin and D.J. Costello Jr., Error Control Coding: Fundamentals and Applications. Prentice-Hall (1983).
- J.H. van Lint, Introduction to Coding Theory, Edition. Springer (1999).
- H.-A. Loeliger, G.D. Forney Jr., T. Mittelholzer and M.D. Trott, Minimality and observability of group systems. Linear Algebra Appl.205-206 (1994) 937-963.
- J.L. Massey and M.K. Sain, Codes, automata and contnuous systems: Explicit interconnections. IEEE Trans. Automat. Control12 (1967) 644-650.
- R.J. McEliece, The algebraic theory of convolutional codes, in Handbook of Coding Theory, Vol. 1, edited by V. Pless and W.C. Huffman. Elsevier (1998) 1065-1138.
- J.C. McConnel and J.C. Robson, Noncommutative Noetherian Rings. Wiley (1987).
- H. Mounier, P. Rouchon and J. Rudolph, Some examples of linear systems with delays. APII J. Europ. Syst. Automat.31 (1997) 911-925.
- P. Piret, Convolutional Codes, an Algebraic Approach. MIT Press (1988).
- J. Rosenthal, Connections between linear systems and convolutional codes, in Codes, Systems and Graphical Models, edited by B. Marcus and J. Rosenthal. Springer (2000) 39-66.
- J. Rosenthal, J.M. Schumacher and E.V. York, On behaviors and convolutional codes. IEEE Trans. Informat. Theory42 (1996) 1881-1891.
- J. Rosenthal and E.V. York, BCH convolutional codes. IEEE Trans. Inform. Theory45 (1999) 1833-1844.
- J. Rotman, An Introduction to Homological Algebra. Academic Press (1979).
- A.J. Viterbi and J.K. Omura, Principles of Digital Communication and Coding. McGraw-Hill (1979).
- L. Weiss, Controllability, realization and stability of discrete-time systems. SIAM J. Control10 (1972) 230-251.
- J.C. Willems, Paradigms and puzzles in the theory of dynamical systems. IEEE Trans. Automat. Control36 (1991) 259-294.
- G. Zémor, Cours de cryptographie. Cassini (2000).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.