On the structure of linear recurrent error-control codes

Michel Fliess

ESAIM: Control, Optimisation and Calculus of Variations (2010)

  • Volume: 8, page 703-713
  • ISSN: 1292-8119

Abstract

top
We are extending to linear recurrent codes, i.e., to time-varying convolutional codes, most of the classic structural properties of fixed convolutional codes. We are also proposing a new connection between fixed convolutional codes and linear block codes. These results are obtained thanks to a module-theoretic framework which has been previously developed for linear control.

How to cite

top

Fliess, Michel. "On the structure of linear recurrent error-control codes." ESAIM: Control, Optimisation and Calculus of Variations 8 (2010): 703-713. <http://eudml.org/doc/90667>.

@article{Fliess2010,
abstract = { We are extending to linear recurrent codes, i.e., to time-varying convolutional codes, most of the classic structural properties of fixed convolutional codes. We are also proposing a new connection between fixed convolutional codes and linear block codes. These results are obtained thanks to a module-theoretic framework which has been previously developed for linear control. },
author = {Fliess, Michel},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Convolutional codes; linear recurrent codes; block codes; transducers; encoders; feedback decoding; linear systems; controllability; observability; input-output inversion; modules.; convolutional codes; block codes; controllability; modules},
language = {eng},
month = {3},
pages = {703-713},
publisher = {EDP Sciences},
title = {On the structure of linear recurrent error-control codes},
url = {http://eudml.org/doc/90667},
volume = {8},
year = {2010},
}

TY - JOUR
AU - Fliess, Michel
TI - On the structure of linear recurrent error-control codes
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 8
SP - 703
EP - 713
AB - We are extending to linear recurrent codes, i.e., to time-varying convolutional codes, most of the classic structural properties of fixed convolutional codes. We are also proposing a new connection between fixed convolutional codes and linear block codes. These results are obtained thanks to a module-theoretic framework which has been previously developed for linear control.
LA - eng
KW - Convolutional codes; linear recurrent codes; block codes; transducers; encoders; feedback decoding; linear systems; controllability; observability; input-output inversion; modules.; convolutional codes; block codes; controllability; modules
UR - http://eudml.org/doc/90667
ER -

References

top
  1. C. Berrou and A. Glavieux, Near-optimum error-correcting coding and decoding: Turbo-codes. IEEE Trans. Communicat.44 (1996) 1261-1271.  
  2. R.E. Blahut, Theory and Practice of Error Control Codes. Addison-Wesley (1983).  Zbl0569.94012
  3. N. Bourbaki, Algèbre, Chap. 2. Hermann (1970).  
  4. G. Cohen, J.-L. Dornstetter and P. Godlewski, Codes correcteurs d'erreurs. Masson (1992).  
  5. R.M. Cohn, Difference Algebra. Interscience (1965).  
  6. A. Dholakia, Introduction to Convolutional Codes with Applications. Kluwer (1994).  Zbl0826.94001
  7. F. Fagnani and S. Zampieri, System-theoretic properties of convolutional codes over rings. IEEE Trans. Inform. Theory47 (2001) 2256-2274.  Zbl1028.94033
  8. M. Fliess, Automatique en temps discret et algèbre aux différences. Forum Math.2 (1990) 213-232.  
  9. M. Fliess, Some basic structural properties of generalized linear systems. Systems Control Lett.15 (1990) 391-396.  Zbl0727.93024
  10. M. Fliess, A remark on Willems' trajectory characterization of linear controllability. Systems Control Lett.19 (1992) 43-45.  Zbl0765.93003
  11. M. Fliess, Reversible linear and nonlinear discrete-time dynamics. IEEE Trans. Automat. Control37 (1992) 1144-1153.  Zbl0764.93058
  12. M. Fliess, Une interprétation algébrique de la transformation de Laplace et des matrices de transfert. Linear Algebra Appl.203-204 (1994) 429-442.  
  13. M. Fliess, Variations sur la notion de contrôlabilité, in Journée Soc. Math. France. Paris (2000) 47-86.  
  14. M. Fliess and H. Bourlès, Discussing some examples of linear system interconnections. Systems Control Lett.27 (1996) 1-7.  Zbl0877.93064
  15. M. Fliess, J. Lévine, P. Martin and P. Rouchon, Flatness and defect of non-linear systems: Introductory theory and applications. Internat. J. Control61 (1995) 1327-1361.  Zbl0838.93022
  16. M. Fliess and R. Marquez, Continuous-time linear predictive control and flatness: A module-theoretic setting with examples. Internat. J. Control73 (2000) 606-623.  Zbl1006.93508
  17. M. Fliess and R. Marquez, Une approche intrinsèque de la commande prédictive linéaire discrète. APII J. Europ. Syst. Automat.35 (2001) 127-147.  
  18. M. Fliess, R. Marquez, E. Delaleau and H. Sira-Ramírez, Correcteurs proportionnels-intégraux généralisés. ESAIM: COCV7 (2002) 23-41.  
  19. M. Fliess, R. Marquez and H. Mounier, An extension of predictive control, PID regulators and Smith predictors to some linear delay systems. Internat. J. Control (to appear).  Zbl1021.93015
  20. M. Fliess and H. Mounier, Controllability and observability of linear delay systems: An algebraic approach. ESAIM: COCV3 (1998) 301-314.  Zbl0908.93013
  21. G.D. Forney Jr., Convolutional codes I: Algebraic structure. IEEE Trans. Inform. Theory16 (1970) 720-738.  Zbl0205.20702
  22. G.D. Forney Jr., Minimal bases of rational vector spaces, with applications to multivariable linear systems. SIAM J. Control13 (1975) 493-520.  Zbl0269.93011
  23. G.D. Forney Jr., Algebraic structure of convolutional codes and algebraic system theory, in Mathematical System Theory - The Influence of R.E. Kalman, edited by A.C. Antoulas. Springer (1991) 527-557.  Zbl0751.94011
  24. G.D. Forney Jr. and M.D. Trott, The dynamics of group codes: State-space, trellis diagrams and canonical encoders. IEEE Trans. Inform. Theory39 (1993) 1491-1513.  Zbl0801.94015
  25. G.D. Forney Jr., B. Marcus, N.T. Sindhushayana and M. Trott, A multilingual dictionary: System theory, coding theory, symbolic dynamics and automata theory, in Different Aspects of Coding Theory. Proc. Symp. Appl. Math.50; Amer. Math. Soc. (1995) 109-138.  Zbl0845.58024
  26. R. Johannesson and K.Sh. Zigangirov, Fundamentals of Convolutional Coding. IEEE Press (1999).  Zbl0964.94024
  27. T. Kailath, Linear Systems. Prentice-Hall (1979).  
  28. E.W. Kamen, P.P. Khargonekar and K.R. Poola, A transfer-function approach to linear time-varying discrete-time systems. SIAM J. Control Optim.23 (1985) 550-565.  Zbl0626.93039
  29. T.Y. Lam, Lectures on Rings and Modules. Springer (1999).  Zbl0911.16001
  30. S. Lin and D.J. Costello Jr., Error Control Coding: Fundamentals and Applications. Prentice-Hall (1983).  Zbl1310.94181
  31. J.H. van Lint, Introduction to Coding Theory, 3 rd Edition. Springer (1999).  
  32. H.-A. Loeliger, G.D. Forney Jr., T. Mittelholzer and M.D. Trott, Minimality and observability of group systems. Linear Algebra Appl.205-206 (1994) 937-963.  Zbl0813.93046
  33. J.L. Massey and M.K. Sain, Codes, automata and contnuous systems: Explicit interconnections. IEEE Trans. Automat. Control12 (1967) 644-650.  
  34. R.J. McEliece, The algebraic theory of convolutional codes, in Handbook of Coding Theory, Vol. 1, edited by V. Pless and W.C. Huffman. Elsevier (1998) 1065-1138.  Zbl0967.94020
  35. J.C. McConnel and J.C. Robson, Noncommutative Noetherian Rings. Wiley (1987).  
  36. H. Mounier, P. Rouchon and J. Rudolph, Some examples of linear systems with delays. APII J. Europ. Syst. Automat.31 (1997) 911-925.  
  37. P. Piret, Convolutional Codes, an Algebraic Approach. MIT Press (1988).  Zbl0986.94510
  38. J. Rosenthal, Connections between linear systems and convolutional codes, in Codes, Systems and Graphical Models, edited by B. Marcus and J. Rosenthal. Springer (2000) 39-66.  Zbl0993.94559
  39. J. Rosenthal, J.M. Schumacher and E.V. York, On behaviors and convolutional codes. IEEE Trans. Informat. Theory42 (1996) 1881-1891.  Zbl0876.94042
  40. J. Rosenthal and E.V. York, BCH convolutional codes. IEEE Trans. Inform. Theory45 (1999) 1833-1844.  Zbl0958.94035
  41. J. Rotman, An Introduction to Homological Algebra. Academic Press (1979).  Zbl0441.18018
  42. A.J. Viterbi and J.K. Omura, Principles of Digital Communication and Coding. McGraw-Hill (1979).  Zbl0495.94002
  43. L. Weiss, Controllability, realization and stability of discrete-time systems. SIAM J. Control10 (1972) 230-251.  Zbl0238.93007
  44. J.C. Willems, Paradigms and puzzles in the theory of dynamical systems. IEEE Trans. Automat. Control36 (1991) 259-294.  
  45. G. Zémor, Cours de cryptographie. Cassini (2000).  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.