Transparent potentials and hamiltonian systems
Journées équations aux dérivées partielles (1992)
- page 1-4
- ISSN: 0752-0360
Access Full Article
topHow to cite
topReferences
top- [1] J.-P. FRANCOISE and R.G. NOVIKOV. - Solutions rationnelles des équations de t Korteweg-de Vries en dimension 2+1 et problèmes à m corps la droite, C.R. Acad. Sci. Paris, 314, série I, 1992, pp. 109-11. Zbl0752.35060MR93g:58060
- [2] J. MOSER. - Three integrable Hamiltonian systems connected with isospectral formations, Advances in Math., 16, 1975, p. 197-220. Zbl0303.34019MR51 #12058
- [3] H. AIRAULT, H.P. Mc KEAN et J. MOSER. - Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-boby problem, Comm. Pure and Applied Math., 30, 1, 1977, p. 95-148. Zbl0338.35024MR58 #31214
- [4] I.M. KRICHEVER. - Rational solutions of Zakharov-Shabat systems and m-body integrable systems on the line, Zap. Nauchn. Sem. (Lomi), 84, 1979, p. 117-130 (Russian). Zbl0413.35008MR82i:35155
- [5] A.S. FOKAS et M.J. ABLOWITZ. - On the inverse scattering of the time-dependent Schrödinger equation and the associated KP (1) equation, Studies in Applied Math., 69, 1983, p. 211-228. Zbl0528.35079MR85f:35174
- [6] P.G. GRINEVICH. - Rational solutions of the Veselov-Novikov equations are pot tial reflectionless at fixed energy, Teoret. Mat. Fiz, 69, 198 p. 307-310. Zbl0617.35121MR88b:81208