Transparent potentials and hamiltonian systems

Roman G. Novikov

Journées équations aux dérivées partielles (1992)

  • page 1-4
  • ISSN: 0752-0360

How to cite

top

Novikov, Roman G.. "Transparent potentials and hamiltonian systems." Journées équations aux dérivées partielles (1992): 1-4. <http://eudml.org/doc/93243>.

@article{Novikov1992,
author = {Novikov, Roman G.},
journal = {Journées équations aux dérivées partielles},
keywords = {potentials with zero scattering amplitude; inverse scattering transform},
language = {eng},
pages = {1-4},
publisher = {Ecole polytechnique},
title = {Transparent potentials and hamiltonian systems},
url = {http://eudml.org/doc/93243},
year = {1992},
}

TY - JOUR
AU - Novikov, Roman G.
TI - Transparent potentials and hamiltonian systems
JO - Journées équations aux dérivées partielles
PY - 1992
PB - Ecole polytechnique
SP - 1
EP - 4
LA - eng
KW - potentials with zero scattering amplitude; inverse scattering transform
UR - http://eudml.org/doc/93243
ER -

References

top
  1. [1] J.-P. FRANCOISE and R.G. NOVIKOV. - Solutions rationnelles des équations de t Korteweg-de Vries en dimension 2+1 et problèmes à m corps la droite, C.R. Acad. Sci. Paris, 314, série I, 1992, pp. 109-11. Zbl0752.35060MR93g:58060
  2. [2] J. MOSER. - Three integrable Hamiltonian systems connected with isospectral formations, Advances in Math., 16, 1975, p. 197-220. Zbl0303.34019MR51 #12058
  3. [3] H. AIRAULT, H.P. Mc KEAN et J. MOSER. - Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-boby problem, Comm. Pure and Applied Math., 30, 1, 1977, p. 95-148. Zbl0338.35024MR58 #31214
  4. [4] I.M. KRICHEVER. - Rational solutions of Zakharov-Shabat systems and m-body integrable systems on the line, Zap. Nauchn. Sem. (Lomi), 84, 1979, p. 117-130 (Russian). Zbl0413.35008MR82i:35155
  5. [5] A.S. FOKAS et M.J. ABLOWITZ. - On the inverse scattering of the time-dependent Schrödinger equation and the associated KP (1) equation, Studies in Applied Math., 69, 1983, p. 211-228. Zbl0528.35079MR85f:35174
  6. [6] P.G. GRINEVICH. - Rational solutions of the Veselov-Novikov equations are pot tial reflectionless at fixed energy, Teoret. Mat. Fiz, 69, 198 p. 307-310. Zbl0617.35121MR88b:81208

NotesEmbed ?

top

You must be logged in to post comments.