On the quasi-classical asymptotics of the forward scattering amplitude and of the total scattering cross-section
D. R. Yafaev (1988-1989)
Séminaire Équations aux dérivées partielles (Polytechnique)
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
D. R. Yafaev (1988-1989)
Séminaire Équations aux dérivées partielles (Polytechnique)
Similarity:
R. Weder (1994-1995)
Séminaire Équations aux dérivées partielles (Polytechnique)
Similarity:
Anna Kazeykina (2013)
Journées Équations aux dérivées partielles
Similarity:
Novikov-Veselov equation is a (2+1)-dimensional analog of the classic Korteweg-de Vries equation integrable via the inverse scattering translform for the 2-dimensional stationary Schrödinger equation. In this talk we present some recent results on existence and absence of algebraically localized solitons for the Novikov-Veselov equation as well as some results on the large time behavior of the “inverse scattering solutions” for this equation.
Lech Zieliński (1999)
Colloquium Mathematicae
Similarity:
We prove the asymptotic completeness of the quantum scattering for a Stark Hamiltonian with a time dependent interaction potential, created by N classical particles moving in a constant electric field.
James Ralston (1996-1997)
Séminaire Équations aux dérivées partielles
Similarity:
M. Jaulent (1972)
Annales de l'I.H.P. Physique théorique
Similarity:
Jean-Jacques Loeffel (1968)
Annales de l'I.H.P. Physique théorique
Similarity: