On the quasi-classical asymptotics of the forward scattering amplitude and of the total scattering cross-section
D. R. Yafaev (1988-1989)
Séminaire Équations aux dérivées partielles (Polytechnique)
Similarity:
D. R. Yafaev (1988-1989)
Séminaire Équations aux dérivées partielles (Polytechnique)
Similarity:
R. Weder (1994-1995)
Séminaire Équations aux dérivées partielles (Polytechnique)
Similarity:
Anna Kazeykina (2013)
Journées Équations aux dérivées partielles
Similarity:
Novikov-Veselov equation is a (2+1)-dimensional analog of the classic Korteweg-de Vries equation integrable via the inverse scattering translform for the 2-dimensional stationary Schrödinger equation. In this talk we present some recent results on existence and absence of algebraically localized solitons for the Novikov-Veselov equation as well as some results on the large time behavior of the “inverse scattering solutions” for this equation.
Lech Zieliński (1999)
Colloquium Mathematicae
Similarity:
We prove the asymptotic completeness of the quantum scattering for a Stark Hamiltonian with a time dependent interaction potential, created by N classical particles moving in a constant electric field.
James Ralston (1996-1997)
Séminaire Équations aux dérivées partielles
Similarity:
M. Jaulent (1972)
Annales de l'I.H.P. Physique théorique
Similarity:
Jean-Jacques Loeffel (1968)
Annales de l'I.H.P. Physique théorique
Similarity: