Ordres médians et ordres de Slater des tournois

Irène Charon; Olivier Hudry; Frédéric Woirgard

Mathématiques et Sciences Humaines (1996)

  • Volume: 133, page 23-56
  • ISSN: 0987-6936

Abstract

top
In this paper, we try to enumerate the results dealing with the combinatorial and algorithmic aspects of the median orders and Slater orders of tournaments. Most of the quoted results may be found in the different papers devoted to these topics ; some others are new ones.

How to cite

top

Charon, Irène, Hudry, Olivier, and Woirgard, Frédéric. "Ordres médians et ordres de Slater des tournois." Mathématiques et Sciences Humaines 133 (1996): 23-56. <http://eudml.org/doc/94476>.

@article{Charon1996,
abstract = {Dans cet article, nous essayons de faire le point sur les résultats concernant les aspects combinatoires et algorithmiques des ordres médians et des ordres de Slater des tournois. La plupart des résultats recensés sont tirés de différentes publications ; plusieurs sont originaux.},
author = {Charon, Irène, Hudry, Olivier, Woirgard, Frédéric},
journal = {Mathématiques et Sciences Humaines},
language = {fre},
pages = {23-56},
publisher = {Ecole des hautes-études en sciences sociales},
title = {Ordres médians et ordres de Slater des tournois},
url = {http://eudml.org/doc/94476},
volume = {133},
year = {1996},
}

TY - JOUR
AU - Charon, Irène
AU - Hudry, Olivier
AU - Woirgard, Frédéric
TI - Ordres médians et ordres de Slater des tournois
JO - Mathématiques et Sciences Humaines
PY - 1996
PB - Ecole des hautes-études en sciences sociales
VL - 133
SP - 23
EP - 56
AB - Dans cet article, nous essayons de faire le point sur les résultats concernant les aspects combinatoires et algorithmiques des ordres médians et des ordres de Slater des tournois. La plupart des résultats recensés sont tirés de différentes publications ; plusieurs sont originaux.
LA - fre
UR - http://eudml.org/doc/94476
ER -

References

top
  1. [1] Adám, A. (1964) "Problem" in Theory of graphs and its applications, Proc. Coll. Smolenice, Czech. Acad. Sci. Publ. 
  2. [2] Alon, N. (1990) "The maximum number of Hamiltonian paths in tournaments ", Combinatorica, 10, 319-324. Zbl0724.05036MR1099246
  3. [3] Alon, N. et J. Spencer, The probabilistic method, J. Wiley, New York, 1992. Zbl0767.05001MR1140703
  4. [4] Alspach, B. (1967) "Cycles of each length in regular tournaments", Canad. Math. Bull., 10, 283-286. Zbl0148.43602MR213261
  5. [5] Arditti, D. (1984) "Un nouvel algorithme de recherche d'un ordre induit par des comparaisons par paires", in Data analysis and informatics III, E. Diday et al. (sd), North Holland, Amsterdam, 323-343. Zbl0565.90030MR787645
  6. [6] Banks, J. (1985) "Sophisticated voting outcomes and agenda control ", Social Choice and Welfare, 2, 295-306. Zbl0597.90011
  7. [7] Banks, J., G. Bordes et M. Le Breton (1991) "Covering relations, closest orderings and hamiltonian bypaths in tournaments", Social Choice and Welfare, 8, 355-363. Zbl0734.90027MR1129431
  8. [8] Barthélemy, J.-P., G. Cohen et A. Lobstein (1992), Complexité algorithmique et problèmes de communication, Masson, Paris. Zbl0765.68005MR1188183
  9. [9] Barthélemy, J.-P., A. Guénoche et O. Hudry (1989) "Median linear orders: heuristics and a branch and bound algorithm", EJOR, 41, 313-325. Zbl0689.90003MR1020904
  10. [10] Barthélemy, J.-P., O. Hudry, G. Isaak, F.S. Roberts et B. Tesman (1995) "The reversing number of a digraph", Discrete Applied Mathematics, 60, 39-76. Zbl0826.05032MR1339075
  11. [11] Barthélemy, J.-P. et B. Monjardet (1981) "The median procedure in cluster analysis and social choice theory", Mathematical Social Sciences, 1, 235-267. Zbl0486.62057MR616379
  12. [12] Barthélemy, J.-P. et B. Monjardet (1988) "The median procedure in data analysis : new results and open problems", in Classification and related methods of data analysis, H.H. Bock (sd), North Holland, Amsterdam. MR999565
  13. [13] Berge, C. (1970) Graphes, Gauthier-Villars. 
  14. [14] Berge, C. (1987) Hypergraphes, Gauthier-Villars. Zbl0623.05001
  15. [15] Bermond, J.-C. (1972) "Ordres à distance minimum d'un tournoi et graphes partiels sans circuits maximaux", Math. Sci. hum, 37, 5-25. Zbl0239.05122MR300927
  16. [16] Bermond, J.-C. et Y. Kodratoff (1976) "Une heuristique pour le calcul de l'indice de transitivité d'un tournoi", RAIRO, 10 (3), 83-92. MR416971
  17. [17] Black, D. (1958) The theory of committees and elections, Cambridge University Press, Londres. Zbl0091.15706
  18. [18] Charon-Fournier, I., A. Germa et O. Hudry (1992) "Encadrement de l'indice de Slater d'un tournoi à l'aide de ses scores", Math. Inf. Sci. hum, 118,53-68. Zbl0846.05040
  19. [19] Charon-Fournier, I., A. Germa et O. Hudry (1992) "Utilisation des scores dans des méthodes exactes déterminant les ordres médians de tournois", Math. Inf. Sci. hum, 119, 53-74. Zbl0845.05050MR1195698
  20. [20] Charon-Fournier, I., A. Germa et O. Hudry, "Random generation of tournaments and asymmetric digraphs with given out-degrees", à paraître dans EJOR. Zbl0974.05502
  21. [21] Charon, I., A. Guénoche, O. Hudry et F. Woirgard, "A branch and bound method applied to ordinal data analysis", Actes de l' "International Conference on Ordinal and Symbolic Data Analysis" (OSDA), Springer Verlag, à paraître. Zbl0897.90003
  22. [22] Charon, I., A. Guénoche, O. Hudry et F. Woirgard, "New results on the computation of median orders", Actes du "5e Colloque International de Théorie des Graphes et Combinatoire ", soumis pour publication. Zbl0878.68090
  23. [23] Charon, I. et O. Hudry, "Lamarckian genetic algorithms applied to the search of median orders", soumis pour publication. Zbl0907.90009
  24. [24] Charon, I., O. Hudry et F. Woirgard, "A 16-vertex tournament for which Banks set and Slater set are disjoint ", soumis pour publication. Zbl0895.05027
  25. [25] Chartrand, G., D. Geller et S. Hedetniemi (1971) "Graphs with forbidden subgraphs", Journal of Combinatorial Theory, 10, 1, série B, 12-41. Zbl0223.05101MR285427
  26. [26] Condorcet, M.J.A.N. Caritat (marquis de) (1785) Essai sur l'application de l'analyse à la probabilité des décisions rendues à la pluralité des voix, Paris. 
  27. [27] Cook, W.D., I. Golan et M. Kress (1988) "Heuristics for ranking players in a round robin tournament", Computers and Operations Research, 15 (2),135-144. MR934628
  28. [28] Debord, B. (1987) "Caractérisation des matrices de préférences nettes et méthodes d'agrégation associées", Mathématiques et Sciences Humaines97, 5-17. Zbl0619.90005MR890684
  29. [30] De La Vega, W.F. (1983) "On the maximal cardinality of a consistent set of arcs in a random tournament", Journal of Combinatorial Theory, 35, série B, 328-332. Zbl0531.05036MR735201
  30. [31] Erdös, P. et J.W. Moon (1965) "On sets of consistent arcs in a tournament", Canad. Math. Bull., 8, 269-271. Zbl0137.43301MR182574
  31. [32] Fishburn, P. (1977) "Condorcet social choice functions", SIAM Journal of Applied Mathematics, 33, 469-489. Zbl0369.90002MR449470
  32. [33] Fishburn, P. (1987) "Decomposing weighted digraphs into sums of chains", Discrete Applied Mathematics, 16, 15-31. Zbl0606.05028MR878023
  33. [34] Garey, M.R., et D.S. Johnson (1979) Computers and intractability, a guide to the theory of NP-completeness, Freeman, New York. Zbl0411.68039MR519066
  34. [35] Goddard, S.T. (1983) "Tournament rankings ", Management Science, 29 (12), 1385-1392. Zbl0527.90047MR809110
  35. [36] Grötschel, M., M. Jünger, G. Reinelt (1984) "A cutting plane algorithm for the linear ordering problem", Operations Research, 32, 1195-1220. Zbl0554.90077MR775257
  36. [37] Grötschel, M., M. Jünger, G. Reinelt (1984) "Optimal triangulation of large real-world input-output-matrices", Statistische Hefte, 25, 261-295. 
  37. [38] Grötschel, M., M. Jünger, G. Reinelt (1985) "Facets of the linear ordering polytope", Mathematical Programming, 33, 43-60. Zbl0577.05035MR809748
  38. [39] Guénoche, A. (1988) "Order at minimum distance of a valued tournament ", communication à Modélisation, Analyse et Agrégation des Préférences et des Choix (TRAP 3), Marseille-Luminy. 
  39. [40] Guénoche, A. (1995) "How to choose according to partial evaluations ", in Advances in Intelligent Computing, B. Bouchon-Meunier et al. (sd), IPMU'94, Lecture Notes in Computer Sciences n° 945, Springer-Verlag, Berlin-Heidelberg, 611-618. 
  40. [41] Guénoche, A. (1996) "Vainqueurs de Kemeny et tournois difficiles", Math. Inf. Sci. hum, 133; Zbl0870.90096MR1411799
  41. [42] Guénoche, A., B. Vandeputte-Riboud et J.-B. Denis (1994) " Selecting varieties using a séries of trials and a combinatorial ordering method", Agronomie, 14, 363-375. 
  42. [43] Guilbaud, G.T. (1952) "Les théories de l'intérêt général et le problème logique de l'agrégation", Économie Appliquée, 5 (4), repris dans Eléments de la théorie des jeux, Dunod, Paris, 1968. 
  43. [44] Guy, R.K. (1967) "A coarseness conjecture of Erdös", Journal of Combinatorial Theory, 3, 38-42. Zbl0149.41501MR216983
  44. [45] Hubert, L. (1976) "Seriation using asymmetric proximity measures", Br. J. Math. Statist. Psychol., 29, 32-52. Zbl0334.92040MR429180
  45. [46] Hudry, O. (1989) Recherche d'ordres médians : complexité, algorithmique et problèmes combinatoires, thèse de doctorat de l'ENST, Paris. 
  46. [47] Hudry, O. (1992) "Sur le nombre d'ordres médians de certains tournois ", Actes des journées Mathématiques Discrètes et Sciences Sociales, Amiens, 56-61. 
  47. [48] Hudry, O. et F. Woirgard (1994) "Combinatorics and voting theory : on the number of median orders of tournaments", communication à Conference on combinatorics in the behavioral sciences, Irvine, États-Unis. 
  48. [49] Hudry, O. et F. Woirgard (1995) "Lower and upper bounds of the maximum number of Slater's orders of tournaments", communication au 8e Colloque Franco-Japonais/4e Colloque Franco-Chinois Combinatoire et Informatique, Brest. 
  49. [50] Isaak, G. (1995) "Tournaments as feedback arc sets", The Electronic Journal of Combinatorics, 2. Zbl0829.68100MR1352570
  50. [51] Jacquet-Lagrèze, É. (1969) "L'agrégation des opinions individuelles", Informatique et Sciences Humaines, 4, 1-21. 
  51. [52] Jung, H.A. (1970) "On subgraphs without cycles in a tournament", Combinatorial theory and its applications II, Balatonfüred, P. Erdös, A. Renyi et V.T. Sös (sd), Amsterdam, North-Holland, 675-677. Zbl0207.23002MR297635
  52. [53] Jünger, M. (1985) Polyhedral combinatorics and the acyclic subdigraph problem, Heldermann Verlag, Berlin. Zbl0557.68045MR788691
  53. [54] Kadane, J.B. (1966) "Some equivalence classes in paired comparisons ", Ann. math. Statist., 37, 488-494. Zbl0171.40101MR187342
  54. [55] Kaykobad, M., Q.N.U. Ahmed, A.T.M. Shafiqul Khalid et R.-A. Bakhtiar (1995) "A new algorithm for ranking players of a round-robin tournament", Computers and Operations Research, 22 (2), 221-226. Zbl0814.90147
  55. [56] Kemeny, J.G. (1959) "Mathematics without numbers ", Daedalus, 88, 577-591. 
  56. [58] Laffond, G. et J.-F. Laslier (1991) "Slater's winners of a tournament may not be in the Banks set", Social Choice and Welfare, 8, 355-363. Zbl0733.90008MR1129432
  57. [59] Laffond, G., J.-F. Laslier et M. Le Breton (1991) "Choosing from a tournament : a progress report and some new results", document de travail du CNAM. 
  58. [60] Landau, H.G. (1953) "On dominance relations and the structure of animal societies III. The condition for a score structure ", Bulletin of Mathematical Biophysics, 13, 1-19. MR41412
  59. [61] Laslier, J.-F. (1996) "Solutions de tournois : un spicilège", Math. Inf. Sci. hum, 133. Zbl0870.90014MR1411797
  60. [62] Lenstra, J.K. (1977) Sequencing by enumerative methods, Mathematical Centre Tracts n° 69, Mathematisch Centrum, Amsterdam. Zbl0407.90025MR443968
  61. [63] Marcotorchino, J.-F. et P. Michaud (1979) Optimisation en analyse ordinale de données, Masson, Paris. 
  62. [64] Miller, N. (1980) "A new solution set for tournaments and majority voting : Further graph-theoretical approaches to the theory of voting", American Journal of Political Science, 24 (1), 68-96. 
  63. [65] Monjardet, B. (1973) "Tournois et ordres médians pour une opinion", Mathématiques et Sciences Humaines, 43, 55-73. Zbl0271.05114MR376451
  64. [66] Monjardet, B. (1990) "Sur diverses formes de la "règle de Condorcet" d'agrégation des préférences", Math. Inf. Sci. hum, 111, 61-71. Zbl0723.01012MR1082274
  65. [67] Moon, J.W. (1968) Topics on tournaments, Holt, Rinehart and Winston. Zbl0191.22701MR256919
  66. [68] Phillips, J.P.N. (1976) "On an algorithm of Smith and Payne for determining Slater's i and all nearest adjoining orders ", British Journal of Mathematical and Statistical Psychology, 29, 126-127. 
  67. [69] Poljak, S., V. Rödl et J. Spencer (1988) "Tournament ranking with expected profit in polynomial time", SIAM Journal Disc Math, 1 (3), 372-376. Zbl0667.05030MR955653
  68. [70] Poljak, S. et D. Turzik (1986) "A polynomial time heuristic for certain subgraph optimization problems with guaranteed lower bound", Discrete Mathematics, 58, 99-104. Zbl0585.05032MR820844
  69. [71] Reid, K.B. (1969) "On set of arcs containing no cycles in tournaments", Canad. Math. Bull., 12, 261-264. Zbl0181.51901MR250926
  70. [72] Reinelt, G. (1985) The linear ordering problem : algorithms and applications, Research and Exposition in Mathematics 8, Heldermann Verlag, Berlin. Zbl0565.68058MR831936
  71. [73] Remage Jr., R. et W.A. ThompsonJr. (1966) "Maximum likelihood paired comparison rankings", Biometrika, 53,143-149. Zbl0138.13207MR196854
  72. [74] Slater, P. (1961) "Inconsistencies in a schedule of paired comparisons", Biometrika, 48, 303-312. 
  73. [75] Smith, A.F.M. et C.D. Payne (1974) "An algorithm for determining Slater's i and all nearest adjoining orders", British Journal of Mathematical and Statistical Psychology27, 49-52. 
  74. [76] Spencer, J. (1971) "Optimal ranking of tournaments ", Networks1, 135-138. Zbl0236.05110MR299532
  75. [77] Spencer, J. (1978) "Nonconstructive methods in discrete mathematics ", in Studies in Combinatorics, G.C. Rota (sd), Mathematical Association of America, Washington DC, 142-178. Zbl0407.05001MR513005
  76. [78] Spencer, J. (1987) Ten lectures on the probabilistic method, CBMS-NSF Regional Conference Series in Applied Mathematics N° 52, SIAM, Philadelphie, États-Unis. Zbl0703.05046MR929258
  77. [79] Szele, T. (1943) "Kombinatorikai vizsgálatok az iránított teljes gráffal kapesolatban", Mat. Fiz. Lapok., 50, 223-256, traduit en allemand sous le titre " Untersuchungen über gerichtete vollständige Graphen", Publ. Math. Debrecen, 13 (1966), 145-168. Zbl0178.57703
  78. [80] Thomassen, C. (1987) "Counterexamples to Adám's conjecture on arc reversals in directed graphs", Journal of Combinatorial Theory, 42, série B, 128-130. Zbl0609.05041MR872413
  79. [81] Younger, D.H. (1963) "Minimum feedback arc sets for a directed graph", IEEE Trans. of the profes. tech. group in circuit theory, 10 (2), 238-245. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.