Asymptotic expansion in time of the Schrödinger group on conical manifolds
- [1] Université de Nantes Laboratoire Jean Leray UMR 6629 du CNRS Département de Mathématiques 44322 Nantes Cedex 3 (France)
Annales de l’institut Fourier (2006)
- Volume: 56, Issue: 6, page 1903-1945
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topWang, Xue Ping. "Asymptotic expansion in time of the Schrödinger group on conical manifolds." Annales de l’institut Fourier 56.6 (2006): 1903-1945. <http://eudml.org/doc/10194>.
@article{Wang2006,
abstract = {For Schrödinger operator $P$ on Riemannian manifolds with conical end, we study the contribution of zero energy resonant states to the singularity of the resolvent of $P$ near zero. Long-time expansion of the Schrödinger group $U(t) = \{\rm e\}^\{-it P\}$ is obtained under a non-trapping condition at high energies.},
affiliation = {Université de Nantes Laboratoire Jean Leray UMR 6629 du CNRS Département de Mathématiques 44322 Nantes Cedex 3 (France)},
author = {Wang, Xue Ping},
journal = {Annales de l’institut Fourier},
keywords = {Resolvent expansion; zero energy resonance; Schrödinger operator with metric; resolvent expansion},
language = {eng},
number = {6},
pages = {1903-1945},
publisher = {Association des Annales de l’institut Fourier},
title = {Asymptotic expansion in time of the Schrödinger group on conical manifolds},
url = {http://eudml.org/doc/10194},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Wang, Xue Ping
TI - Asymptotic expansion in time of the Schrödinger group on conical manifolds
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 6
SP - 1903
EP - 1945
AB - For Schrödinger operator $P$ on Riemannian manifolds with conical end, we study the contribution of zero energy resonant states to the singularity of the resolvent of $P$ near zero. Long-time expansion of the Schrödinger group $U(t) = {\rm e}^{-it P}$ is obtained under a non-trapping condition at high energies.
LA - eng
KW - Resolvent expansion; zero energy resonance; Schrödinger operator with metric; resolvent expansion
UR - http://eudml.org/doc/10194
ER -
References
top- S. Albeverio, D. Bollé, F. Gesztesy, R. Hoegh-Krohn, Low-energy parameters in nonrelativistic scattering theory, Ann. Physics 148 (1983), 308-326 Zbl0542.35056MR714194
- R. D. Amado, F. C. Greenwood, There is no Efimov effect for four or more particles, Phys. Rev. D 7 (1973), 2517-2519 MR366267
- R. D. Amado, J. V. Noble, On Efimov’s effect: A new pathology of three-particle systems, Phys. Lett. B 35 (1971), 25-27; II. Phys. Lett. D, 5 (1972), 1992-2002
- M. F. Atiyah, V. K. Patodi, I. M. Singer, Spectral asymmetry and Riemannian geometry I, Math. Proc. Cambridge Phil. Soc. 77 (1975), 43-69 Zbl0297.58008MR397797
- D. Bollé, F. Gesztesy, C. Danneels, Threshold scattering in two dimensions, Ann. Inst. H. Poincaré, Sect. A 48 (1988), 175-204 Zbl0696.35040MR952661
- P. Bolley, J. Camus, Opérateurs à indices, II, Séminaire d’analyse fonctionnelle (1973), Publication des séminaires mathématiques, Univ. Rennes 1 Zbl0268.35037MR481502
- J. Brüning, R. T. Seeley, An index theorem for first order regular singular operators, Amer. J. Math. 110 (1988), 659-714 Zbl0664.58035MR955293
- N. Burq, F. Planchon, J. G. Stalke, A. Shadi Tahvildar-Zadeh, Strichartz estimates for the wave and Schrödinger equations with the inverse-square potentials, J. Funct. Analysis 203 (2003), 519-549 Zbl1030.35024MR2003358
- F. Cardoso, G. Vodev, Uniform estimates of the resolvent of the Laplace-Beltrami operator on infinite volume Riemannian manifolds, II, Ann. Inst. H. Poincaré 3 (2002), 673-691 Zbl1021.58016MR1933365
- G. Carron, Théorème de l’indice sur les variétés non-compactes, J. reine angew. Math. 541 (2001), 81-115 Zbl1014.58012MR1876286
- G. Carron, A topological criterion for the existence of half-bound states, J. London Math. Soc. 65 (2002), 757-768 Zbl1027.58023MR1895746
- G. Carron, Le saut en zéro de la fonction de décalage spectral, J. Funct. Anal. 212 (2004), 222-260 Zbl1081.58019MR2067165
- S. Fournais, E. Skibsted, Zero energy asymptotics of the resolvent for a class of slowly decaying potential, (2003), Preprint Zbl1177.35057
- R. Froese, I. Herbst, Exponential bounds and absence of positive eigenvalues for -body Schrödinger operators, Comm. Math. Phys. 87 (1982/83), 429-447 Zbl0509.35061MR682117
- A. Hassell, S. Marcshall, Eigenvalues of Schrödinger operators with potential asymptotically homogeneous of degree , (October 2005), Preprint
- A. Hassell, J. Wunsch, The Schrödinger propagators for scattering metrics, (2003), Preprint Zbl1126.58016
- A. Jensen, T. Kato, Spectral properties of Schrödinger operators and time decay of wave functions, Duke Math. J. 46 (1979), 583-611 Zbl0448.35080MR544248
- A. Jensen, E. Mourre, P. Perry, Multiple commutator estimates and resolvent smoothness in quantum scattering theory, Ann. Inst. H. Poincaré, Sect A 41 (1984), 207-225 Zbl0561.47007MR769156
- A. Jensen, G. Nenciu, A unified approach to resolvent expansions at thresholds, Reviews Math. Phys. 13 (2001), 717-754 Zbl1029.81067MR1841744
- V. Maz’ya, S. Nazarov, B. Plamenevskij, Asymptotic Theory of Elliptic Boundary Value Problemes in Singularly Perturbed Domains, 1 (2000), Birkhäuser, Boston-Berlin Zbl1127.35301
- R. B. Melrose, The Atiyah-Patodi-Singer index theorem, A. K. Peters Classics (1993), Massachusetts Zbl0796.58050MR1348401
- E. Mourre, Absence of singular continuous spectrum for certain self-adjoint operators, Comm. Math. Phys. 78 (1981), 391-408 Zbl0489.47010MR603501
- W. Müller, Relative zeta functions, relative determinants, and scattering theory, Comm. Math. Physics 192 (1998), 309-347 Zbl0947.58025MR1617554
- M. Murata, Asymptotic expansions in time for solutions of Schrödinger type equations, J. Funct. Analysis 49 (1982), 10-53 Zbl0499.35019MR680855
- S. Nakamura, Low energy asymptotics for Schrödinger operators with slowly decreasing potentials, Comm. Math. Phys. 161 (1994), 63-76 Zbl0812.35110MR1266070
- R. G. Newton, Noncentral potentials: the generalized Levinson theorem and the structure of the spectrum, J. Math. Phys. 18 (1977), 1582-1588 MR446169
- R. G. Newton, Scattering Theory of Waves and Particles, (1982), Springer-Verlag, Berlin Zbl0496.47011MR666397
- F. W. J. Olver, Asymptotics and Special Functions, A. K. Peters Classics (1997), Massachusetts Zbl0982.41018MR1429619
- J. Rauch, Local decay of scattering solutions to Schrödinger’s equation, Comm. Math. Phys. 61 (1978), 149-168 Zbl0381.35023MR495958
- D. Robert, Relative time-delay for perturbations of elliptic operators and semi-classical asymptotics, J. Funct. Analysis 126 (1994), 36-82 Zbl0813.35073MR1305063
- B. R. Vainberg, On the short wave asymptotic behaviour of solutions of stationary problems and the asymptoic behaviou as of solutions of non-stationary problems, Russ. Math. Survey 30 (1975), 1-58 Zbl0318.35006MR415085
- A. Vasy, Propagation of singularities in three-body scattering, Astérisque 262 (2000), 6-151 Zbl0941.35001MR1744795
- A. Vasy, M. Zworski, Semiclassical estimates in asymptotically Euclidean scattering, Comm. in Math. Phys. 212 (2000), 205-217 Zbl0955.58023MR1764368
- X. P. Wang, Time-decay of scattering solutions and classical trajectories, Ann. Inst. H. Poincaré, Sect A 47 (1987), 25-37 Zbl0641.35018MR912755
- X. P. Wang, Time-decay of scattering solutions and resolvent estimates for semi-classical Schrödinger operators, J. Diff. Equations 71 (1988), 348-395 Zbl0651.35022MR927007
- X. P. Wang, Asymptotic behavior of the resolvent of -body Schrödinger operators near a threshold, Ann. Inst. H. Poincaré 4 (2003), 553-600 Zbl1049.81026MR2007257
- X. P. Wang, On the existence of the -body Efimov effect, J. Funct. Analysis 209 (2004), 137-161 Zbl1059.81061MR2039219
- X. P. Wang, Threshold energy resonance in geometric scattering, Proceedings of Symposium “Scattering and Spectral Theory”, August 2003, Recife, Brazil, Matemática Contemporânea 26 (2004), 135-164 Zbl1159.58310MR2111819
- G. N. Watson, A Treatise on the Theory of Bessel Functions, (1994), Cambridge Univ. Press, Cambridge Zbl0849.33001MR1349110
- D. R. Yafaev, The low-energy scattering for slowly decreasing potentials, Comm. Math. Phys. 85 (1982), 177-198 Zbl0509.35065MR675998
Citations in EuDML Documents
top- Xue Ping Wang, Corrigendum to: Asymptotic expansion in time of the Schrödinger group on conical manifolds
- Colin Guillarmou, Andrew Hassell, Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds. II
- Jean-François Bony, Dietrich Häfner, Local energy decay for several evolution equations on asymptotically euclidean manifolds
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.