Asymptotic expansion in time of the Schrödinger group on conical manifolds

Xue Ping Wang[1]

  • [1] Université de Nantes Laboratoire Jean Leray UMR 6629 du CNRS Département de Mathématiques 44322 Nantes Cedex 3 (France)

Annales de l’institut Fourier (2006)

  • Volume: 56, Issue: 6, page 1903-1945
  • ISSN: 0373-0956

Abstract

top
For Schrödinger operator P on Riemannian manifolds with conical end, we study the contribution of zero energy resonant states to the singularity of the resolvent of P near zero. Long-time expansion of the Schrödinger group U ( t ) = e - i t P is obtained under a non-trapping condition at high energies.

How to cite

top

Wang, Xue Ping. "Asymptotic expansion in time of the Schrödinger group on conical manifolds." Annales de l’institut Fourier 56.6 (2006): 1903-1945. <http://eudml.org/doc/10194>.

@article{Wang2006,
abstract = {For Schrödinger operator $P$ on Riemannian manifolds with conical end, we study the contribution of zero energy resonant states to the singularity of the resolvent of $P$ near zero. Long-time expansion of the Schrödinger group $U(t) = \{\rm e\}^\{-it P\}$ is obtained under a non-trapping condition at high energies.},
affiliation = {Université de Nantes Laboratoire Jean Leray UMR 6629 du CNRS Département de Mathématiques 44322 Nantes Cedex 3 (France)},
author = {Wang, Xue Ping},
journal = {Annales de l’institut Fourier},
keywords = {Resolvent expansion; zero energy resonance; Schrödinger operator with metric; resolvent expansion},
language = {eng},
number = {6},
pages = {1903-1945},
publisher = {Association des Annales de l’institut Fourier},
title = {Asymptotic expansion in time of the Schrödinger group on conical manifolds},
url = {http://eudml.org/doc/10194},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Wang, Xue Ping
TI - Asymptotic expansion in time of the Schrödinger group on conical manifolds
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 6
SP - 1903
EP - 1945
AB - For Schrödinger operator $P$ on Riemannian manifolds with conical end, we study the contribution of zero energy resonant states to the singularity of the resolvent of $P$ near zero. Long-time expansion of the Schrödinger group $U(t) = {\rm e}^{-it P}$ is obtained under a non-trapping condition at high energies.
LA - eng
KW - Resolvent expansion; zero energy resonance; Schrödinger operator with metric; resolvent expansion
UR - http://eudml.org/doc/10194
ER -

References

top
  1. S. Albeverio, D. Bollé, F. Gesztesy, R. Hoegh-Krohn, Low-energy parameters in nonrelativistic scattering theory, Ann. Physics 148 (1983), 308-326 Zbl0542.35056MR714194
  2. R. D. Amado, F. C. Greenwood, There is no Efimov effect for four or more particles, Phys. Rev. D 7 (1973), 2517-2519 MR366267
  3. R. D. Amado, J. V. Noble, On Efimov’s effect: A new pathology of three-particle systems, Phys. Lett. B 35 (1971), 25-27; II. Phys. Lett. D, 5 (1972), 1992-2002 
  4. M. F. Atiyah, V. K. Patodi, I. M. Singer, Spectral asymmetry and Riemannian geometry I, Math. Proc. Cambridge Phil. Soc. 77 (1975), 43-69 Zbl0297.58008MR397797
  5. D. Bollé, F. Gesztesy, C. Danneels, Threshold scattering in two dimensions, Ann. Inst. H. Poincaré, Sect. A 48 (1988), 175-204 Zbl0696.35040MR952661
  6. P. Bolley, J. Camus, Opérateurs à indices, II, Séminaire d’analyse fonctionnelle (1973), Publication des séminaires mathématiques, Univ. Rennes 1 Zbl0268.35037MR481502
  7. J. Brüning, R. T. Seeley, An index theorem for first order regular singular operators, Amer. J. Math. 110 (1988), 659-714 Zbl0664.58035MR955293
  8. N. Burq, F. Planchon, J. G. Stalke, A. Shadi Tahvildar-Zadeh, Strichartz estimates for the wave and Schrödinger equations with the inverse-square potentials, J. Funct. Analysis 203 (2003), 519-549 Zbl1030.35024MR2003358
  9. F. Cardoso, G. Vodev, Uniform estimates of the resolvent of the Laplace-Beltrami operator on infinite volume Riemannian manifolds, II, Ann. Inst. H. Poincaré 3 (2002), 673-691 Zbl1021.58016MR1933365
  10. G. Carron, Théorème de l’indice sur les variétés non-compactes, J. reine angew. Math. 541 (2001), 81-115 Zbl1014.58012MR1876286
  11. G. Carron, A topological criterion for the existence of half-bound states, J. London Math. Soc. 65 (2002), 757-768 Zbl1027.58023MR1895746
  12. G. Carron, Le saut en zéro de la fonction de décalage spectral, J. Funct. Anal. 212 (2004), 222-260 Zbl1081.58019MR2067165
  13. S. Fournais, E. Skibsted, Zero energy asymptotics of the resolvent for a class of slowly decaying potential, (2003), Preprint Zbl1177.35057
  14. R. Froese, I. Herbst, Exponential bounds and absence of positive eigenvalues for N -body Schrödinger operators, Comm. Math. Phys. 87 (1982/83), 429-447 Zbl0509.35061MR682117
  15. A. Hassell, S. Marcshall, Eigenvalues of Schrödinger operators with potential asymptotically homogeneous of degree - 2 , (October 2005), Preprint 
  16. A. Hassell, J. Wunsch, The Schrödinger propagators for scattering metrics, (2003), Preprint Zbl1126.58016
  17. A. Jensen, T. Kato, Spectral properties of Schrödinger operators and time decay of wave functions, Duke Math. J. 46 (1979), 583-611 Zbl0448.35080MR544248
  18. A. Jensen, E. Mourre, P. Perry, Multiple commutator estimates and resolvent smoothness in quantum scattering theory, Ann. Inst. H. Poincaré, Sect A 41 (1984), 207-225 Zbl0561.47007MR769156
  19. A. Jensen, G. Nenciu, A unified approach to resolvent expansions at thresholds, Reviews Math. Phys. 13 (2001), 717-754 Zbl1029.81067MR1841744
  20. V. Maz’ya, S. Nazarov, B. Plamenevskij, Asymptotic Theory of Elliptic Boundary Value Problemes in Singularly Perturbed Domains, 1 (2000), Birkhäuser, Boston-Berlin Zbl1127.35301
  21. R. B. Melrose, The Atiyah-Patodi-Singer index theorem, A. K. Peters Classics (1993), Massachusetts Zbl0796.58050MR1348401
  22. E. Mourre, Absence of singular continuous spectrum for certain self-adjoint operators, Comm. Math. Phys. 78 (1981), 391-408 Zbl0489.47010MR603501
  23. W. Müller, Relative zeta functions, relative determinants, and scattering theory, Comm. Math. Physics 192 (1998), 309-347 Zbl0947.58025MR1617554
  24. M. Murata, Asymptotic expansions in time for solutions of Schrödinger type equations, J. Funct. Analysis 49 (1982), 10-53 Zbl0499.35019MR680855
  25. S. Nakamura, Low energy asymptotics for Schrödinger operators with slowly decreasing potentials, Comm. Math. Phys. 161 (1994), 63-76 Zbl0812.35110MR1266070
  26. R. G. Newton, Noncentral potentials: the generalized Levinson theorem and the structure of the spectrum, J. Math. Phys. 18 (1977), 1582-1588 MR446169
  27. R. G. Newton, Scattering Theory of Waves and Particles, (1982), Springer-Verlag, Berlin Zbl0496.47011MR666397
  28. F. W. J. Olver, Asymptotics and Special Functions, A. K. Peters Classics (1997), Massachusetts Zbl0982.41018MR1429619
  29. J. Rauch, Local decay of scattering solutions to Schrödinger’s equation, Comm. Math. Phys. 61 (1978), 149-168 Zbl0381.35023MR495958
  30. D. Robert, Relative time-delay for perturbations of elliptic operators and semi-classical asymptotics, J. Funct. Analysis 126 (1994), 36-82 Zbl0813.35073MR1305063
  31. B. R. Vainberg, On the short wave asymptotic behaviour of solutions of stationary problems and the asymptoic behaviou as t of solutions of non-stationary problems, Russ. Math. Survey 30 (1975), 1-58 Zbl0318.35006MR415085
  32. A. Vasy, Propagation of singularities in three-body scattering, Astérisque 262 (2000), 6-151 Zbl0941.35001MR1744795
  33. A. Vasy, M. Zworski, Semiclassical estimates in asymptotically Euclidean scattering, Comm. in Math. Phys. 212 (2000), 205-217 Zbl0955.58023MR1764368
  34. X. P. Wang, Time-decay of scattering solutions and classical trajectories, Ann. Inst. H. Poincaré, Sect A 47 (1987), 25-37 Zbl0641.35018MR912755
  35. X. P. Wang, Time-decay of scattering solutions and resolvent estimates for semi-classical Schrödinger operators, J. Diff. Equations 71 (1988), 348-395 Zbl0651.35022MR927007
  36. X. P. Wang, Asymptotic behavior of the resolvent of N -body Schrödinger operators near a threshold, Ann. Inst. H. Poincaré 4 (2003), 553-600 Zbl1049.81026MR2007257
  37. X. P. Wang, On the existence of the N -body Efimov effect, J. Funct. Analysis 209 (2004), 137-161 Zbl1059.81061MR2039219
  38. X. P. Wang, Threshold energy resonance in geometric scattering, Proceedings of Symposium “Scattering and Spectral Theory”, August 2003, Recife, Brazil, Matemática Contemporânea 26 (2004), 135-164 Zbl1159.58310MR2111819
  39. G. N. Watson, A Treatise on the Theory of Bessel Functions, (1994), Cambridge Univ. Press, Cambridge Zbl0849.33001MR1349110
  40. D. R. Yafaev, The low-energy scattering for slowly decreasing potentials, Comm. Math. Phys. 85 (1982), 177-198 Zbl0509.35065MR675998

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.