Local energy decay for several evolution equations on asymptotically euclidean manifolds

Jean-François Bony; Dietrich Häfner

Annales scientifiques de l'École Normale Supérieure (2012)

  • Volume: 45, Issue: 2, page 311-335
  • ISSN: 0012-9593

Abstract

top
Let  P be a long range metric perturbation of the Euclidean Laplacian on  d , d 2 . We prove local energy decay for the solutions of the wave, Klein-Gordon and Schrödinger equations associated to  P . The problem is decomposed in a low and high frequency analysis. For the high energy part, we assume a non trapping condition. For low (resp. high) frequencies we obtain a general result about the local energy decay for the group e i t f ( P ) where f has a suitable development at zero (resp. infinity).

How to cite

top

Bony, Jean-François, and Häfner, Dietrich. "Local energy decay for several evolution equations on asymptotically euclidean manifolds." Annales scientifiques de l'École Normale Supérieure 45.2 (2012): 311-335. <http://eudml.org/doc/272226>.

@article{Bony2012,
abstract = {Let $P$ be a long range metric perturbation of the Euclidean Laplacian on $\{\mathbb \{R\}\}^d$, $d \ge 2$. We prove local energy decay for the solutions of the wave, Klein-Gordon and Schrödinger equations associated to $P$. The problem is decomposed in a low and high frequency analysis. For the high energy part, we assume a non trapping condition. For low (resp. high) frequencies we obtain a general result about the local energy decay for the group $e^\{i t f(P)\}$ where $f$ has a suitable development at zero (resp. infinity).},
author = {Bony, Jean-François, Häfner, Dietrich},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {local energy decay; low frequencies; asymptotically euclidean manifolds; Mourre theory},
language = {eng},
number = {2},
pages = {311-335},
publisher = {Société mathématique de France},
title = {Local energy decay for several evolution equations on asymptotically euclidean manifolds},
url = {http://eudml.org/doc/272226},
volume = {45},
year = {2012},
}

TY - JOUR
AU - Bony, Jean-François
AU - Häfner, Dietrich
TI - Local energy decay for several evolution equations on asymptotically euclidean manifolds
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2012
PB - Société mathématique de France
VL - 45
IS - 2
SP - 311
EP - 335
AB - Let $P$ be a long range metric perturbation of the Euclidean Laplacian on ${\mathbb {R}}^d$, $d \ge 2$. We prove local energy decay for the solutions of the wave, Klein-Gordon and Schrödinger equations associated to $P$. The problem is decomposed in a low and high frequency analysis. For the high energy part, we assume a non trapping condition. For low (resp. high) frequencies we obtain a general result about the local energy decay for the group $e^{i t f(P)}$ where $f$ has a suitable development at zero (resp. infinity).
LA - eng
KW - local energy decay; low frequencies; asymptotically euclidean manifolds; Mourre theory
UR - http://eudml.org/doc/272226
ER -

References

top
  1. [1] W. O. Amrein, A. Boutet de Monvel & V. Georgescu, C 0 -groups, commutator methods and spectral theory of N -body Hamiltonians, Progress in Math. 135, Birkhäuser, 1996. Zbl0962.47500MR1388037
  2. [2] L. Andersson & P. Blue, Hidden symmetries and decay for the wave equation on the Kerr spacetime, preprint arXiv:0908.2265. Zbl06514748
  3. [3] M. Balabane, On a regularizing effect of Schrödinger type groups, Ann. Inst. H. Poincaré Anal. Non Linéaire6 (1989), 1–14. Zbl0699.35027MR984145
  4. [4] M. Ben-Artzi, H. Koch & J.-C. Saut, Dispersion estimates for fourth order Schrödinger equations, C. R. Acad. Sci. Paris Sér. I Math.330 (2000), 87–92. Zbl0942.35160MR1745182
  5. [5] J.-F. Bony & D. Häfner, Low frequency resolvent estimates for long range perturbations of the Euclidean Laplacian, Math. Res. Lett.17 (2010), 301–306. Zbl1228.35165MR2644377
  6. [6] J.-F. Bony & D. Häfner, The semilinear wave equation on asymptotically Euclidean manifolds, Comm. Partial Differential Equations35 (2010), 23–67. Zbl1191.35181MR2748617
  7. [7] J.-F. Bony & D. Häfner, Improved local energy decay for the wave equation on asymptotically Euclidean odd dimensional manifolds in the short range case, preprint arXiv:1107.5251. Zbl1272.35032
  8. [8] J.-M. Bouclet, Low frequency estimates and local energy decay for asymptotically Euclidean Laplacians, Comm. Partial Differential Equations36 (2011), 1239–1286. Zbl1227.35227MR2810587
  9. [9] J.-M. Bouclet, Low frequency estimates for long range perturbations in divergence form, Canad. J. Math.63 (2011), 961–991. Zbl1234.35166MR2866067
  10. [10] N. Burq, Décroissance de l’énergie locale de l’équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel, Acta Math.180 (1998), 1–29. Zbl0918.35081MR1618254
  11. [11] H. Christianson, Applications of cutoff resolvent estimates to the wave equation, Math. Res. Lett.16 (2009), 577–590. Zbl1189.58012MR2525026
  12. [12] M. Dafermos & I. Rodnianski, Lectures on black holes and linear waves, preprint arXiv:0811.0354. Zbl1079.35069MR3098640
  13. [13] K. Datchev & A. Vasy, Gluing semiclassical resolvent estimates, or the importance of being microlocal, Int. Math. Res. Notices (2012), doi:10.1093/imrn/rnr255. Zbl1262.58019
  14. [14] M. Dimassi & J. Sjöstrand, Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series 268, Cambridge Univ. Press, 1999. Zbl0926.35002MR1735654
  15. [15] H. Donnelly, Exhaustion functions and the spectrum of Riemannian manifolds, Indiana Univ. Math. J.46 (1997), 505–527. Zbl0909.58055MR1481601
  16. [16] R. Donninger, W. Schlag & A. Soffer, On pointwise decay of linear waves on a Schwarzschild black hole background, Comm. Math. Phys.309 (2012), 51–86. Zbl1242.83054MR2864787
  17. [17] F. Finster, N. Kamran, J. Smoller & S.-T. Yau, Decay of solutions of the wave equation in the Kerr geometry, Comm. Math. Phys.264 (2006), 465–503. Zbl1194.83015MR2215614
  18. [18] C. Gérard & A. Martinez, Principe d’absorption limite pour des opérateurs de Schrödinger à longue portée, C. R. Acad. Sci. Paris Sér. I Math.306 (1988), 121–123. Zbl0672.35013MR929103
  19. [19] C. Guillarmou & A. Hassell, Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds. I, Math. Ann. 341 (2008), 859–896. Zbl1141.58017MR2407330
  20. [20] C. Guillarmou & A. Hassell, Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds. II, Ann. Inst. Fourier 59 (2009), 1553–1610. Zbl1175.58011MR2566968
  21. [21] W. Hunziker, I. M. Sigal & A. Soffer, Minimal escape velocities, Comm. Partial Differential Equations24 (1999), 2279–2295. Zbl0944.35014MR1720738
  22. [22] A. Jensen & T. Kato, Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J.46 (1979), 583–611. Zbl0448.35080MR544248
  23. [23] A. Jensen, É. Mourre & P. Perry, Multiple commutator estimates and resolvent smoothness in quantum scattering theory, Ann. Inst. H. Poincaré Phys. Théor.41 (1984), 207–225. Zbl0561.47007MR769156
  24. [24] P. D. Lax, C. S. Morawetz & R. S. Phillips, Exponential decay of solutions of the wave equation in the exterior of a star-shaped obstacle, Comm. Pure Appl. Math.16 (1963), 477–486. Zbl0161.08001MR155091
  25. [25] P. D. Lax & R. S. Phillips, Scattering theory, second éd., Pure and Applied Mathematics 26, Academic Press Inc., 1989. Zbl0697.35004MR1037774
  26. [26] R. B. Melrose & J. Sjöstrand, Singularities of boundary value problems. I, Comm. Pure Appl. Math. 31 (1978), 593–617. Zbl0368.35020MR492794
  27. [27] S. Nonnenmacher & M. Zworski, Quantum decay rates in chaotic scattering, Acta Math.203 (2009), 149–233. Zbl1226.35061MR2570070
  28. [28] V. Petkov & L. Stoyanov, Analytic continuation of the resolvent of the Laplacian and the dynamical zeta function, Anal. PDE3 (2010), 427–489. Zbl1251.37031MR2718260
  29. [29] J. V. Ralston, Solutions of the wave equation with localized energy, Comm. Pure Appl. Math.22 (1969), 807–823. Zbl0209.40402MR254433
  30. [30] J. Rauch, Local decay of scattering solutions to Schrödinger’s equation, Comm. Math. Phys.61 (1978), 149–168. Zbl0381.35023MR495958
  31. [31] M. Reed & B. Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press Inc., 1978. Zbl0242.46001MR493421
  32. [32] W. Schlag, A. Soffer & W. Staubach, Decay for the wave and Schrödinger evolutions on manifolds with conical ends. I, Trans. Amer. Math. Soc. 362 (2010), 19–52. Zbl1185.35046MR2550144
  33. [33] W. Schlag, A. Soffer & W. Staubach, Decay for the wave and Schrödinger evolutions on manifolds with conical ends. II, Trans. Amer. Math. Soc. 362 (2010), 289–318. Zbl1187.35032MR2550152
  34. [34] S.-H. Tang & M. Zworski, Resonance expansions of scattered waves, Comm. Pure Appl. Math.53 (2000), 1305–1334. Zbl1032.35148MR1768812
  35. [35] D. Tataru, Local decay of waves on asymptotically flat stationary space-times, preprint arXiv:0910.5290. Zbl1266.83033MR3038715
  36. [36] D. Tataru & M. Tohaneanu, A local energy estimate on Kerr black hole backgrounds, Int. Math. Res. Not.2011 (2011), 248–292. Zbl1209.83028MR2764864
  37. [37] M. E. Taylor, Partial differential equations. I, Applied Mathematical Sciences 115, Springer, 1996. Zbl0869.35002MR1395148
  38. [38] B. R. Vaĭnberg, Asymptotic methods in equations of mathematical physics, Gordon & Breach Science Publishers, 1989. Zbl0743.35001
  39. [39] A. Vasy & J. Wunsch, Positive commutators at the bottom of the spectrum, J. Funct. Anal.259 (2010), 503–523. Zbl1194.35292MR2644111
  40. [40] X. P. Wang, Time-decay of scattering solutions and classical trajectories, Ann. Inst. H. Poincaré Phys. Théor.47 (1987), 25–37. Zbl0641.35018MR912755
  41. [41] X. P. Wang, Asymptotic expansion in time of the Schrödinger group on conical manifolds, Ann. Inst. Fourier56 (2006), 1903–1945. Zbl1118.35022MR2282678
  42. [42] J. Wunsch & M. Zworski, Resolvent estimates for normally hyperbolic trapped sets, Ann. Henri Poincaré12 (2011), 1349–1385. Zbl1228.81170MR2846671

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.