Local energy decay for several evolution equations on asymptotically euclidean manifolds
Jean-François Bony; Dietrich Häfner
Annales scientifiques de l'École Normale Supérieure (2012)
- Volume: 45, Issue: 2, page 311-335
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topBony, Jean-François, and Häfner, Dietrich. "Local energy decay for several evolution equations on asymptotically euclidean manifolds." Annales scientifiques de l'École Normale Supérieure 45.2 (2012): 311-335. <http://eudml.org/doc/272226>.
@article{Bony2012,
abstract = {Let $P$ be a long range metric perturbation of the Euclidean Laplacian on $\{\mathbb \{R\}\}^d$, $d \ge 2$. We prove local energy decay for the solutions of the wave, Klein-Gordon and Schrödinger equations associated to $P$. The problem is decomposed in a low and high frequency analysis. For the high energy part, we assume a non trapping condition. For low (resp. high) frequencies we obtain a general result about the local energy decay for the group $e^\{i t f(P)\}$ where $f$ has a suitable development at zero (resp. infinity).},
author = {Bony, Jean-François, Häfner, Dietrich},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {local energy decay; low frequencies; asymptotically euclidean manifolds; Mourre theory},
language = {eng},
number = {2},
pages = {311-335},
publisher = {Société mathématique de France},
title = {Local energy decay for several evolution equations on asymptotically euclidean manifolds},
url = {http://eudml.org/doc/272226},
volume = {45},
year = {2012},
}
TY - JOUR
AU - Bony, Jean-François
AU - Häfner, Dietrich
TI - Local energy decay for several evolution equations on asymptotically euclidean manifolds
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2012
PB - Société mathématique de France
VL - 45
IS - 2
SP - 311
EP - 335
AB - Let $P$ be a long range metric perturbation of the Euclidean Laplacian on ${\mathbb {R}}^d$, $d \ge 2$. We prove local energy decay for the solutions of the wave, Klein-Gordon and Schrödinger equations associated to $P$. The problem is decomposed in a low and high frequency analysis. For the high energy part, we assume a non trapping condition. For low (resp. high) frequencies we obtain a general result about the local energy decay for the group $e^{i t f(P)}$ where $f$ has a suitable development at zero (resp. infinity).
LA - eng
KW - local energy decay; low frequencies; asymptotically euclidean manifolds; Mourre theory
UR - http://eudml.org/doc/272226
ER -
References
top- [1] W. O. Amrein, A. Boutet de Monvel & V. Georgescu, -groups, commutator methods and spectral theory of -body Hamiltonians, Progress in Math. 135, Birkhäuser, 1996. Zbl0962.47500MR1388037
- [2] L. Andersson & P. Blue, Hidden symmetries and decay for the wave equation on the Kerr spacetime, preprint arXiv:0908.2265. Zbl06514748
- [3] M. Balabane, On a regularizing effect of Schrödinger type groups, Ann. Inst. H. Poincaré Anal. Non Linéaire6 (1989), 1–14. Zbl0699.35027MR984145
- [4] M. Ben-Artzi, H. Koch & J.-C. Saut, Dispersion estimates for fourth order Schrödinger equations, C. R. Acad. Sci. Paris Sér. I Math.330 (2000), 87–92. Zbl0942.35160MR1745182
- [5] J.-F. Bony & D. Häfner, Low frequency resolvent estimates for long range perturbations of the Euclidean Laplacian, Math. Res. Lett.17 (2010), 301–306. Zbl1228.35165MR2644377
- [6] J.-F. Bony & D. Häfner, The semilinear wave equation on asymptotically Euclidean manifolds, Comm. Partial Differential Equations35 (2010), 23–67. Zbl1191.35181MR2748617
- [7] J.-F. Bony & D. Häfner, Improved local energy decay for the wave equation on asymptotically Euclidean odd dimensional manifolds in the short range case, preprint arXiv:1107.5251. Zbl1272.35032
- [8] J.-M. Bouclet, Low frequency estimates and local energy decay for asymptotically Euclidean Laplacians, Comm. Partial Differential Equations36 (2011), 1239–1286. Zbl1227.35227MR2810587
- [9] J.-M. Bouclet, Low frequency estimates for long range perturbations in divergence form, Canad. J. Math.63 (2011), 961–991. Zbl1234.35166MR2866067
- [10] N. Burq, Décroissance de l’énergie locale de l’équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel, Acta Math.180 (1998), 1–29. Zbl0918.35081MR1618254
- [11] H. Christianson, Applications of cutoff resolvent estimates to the wave equation, Math. Res. Lett.16 (2009), 577–590. Zbl1189.58012MR2525026
- [12] M. Dafermos & I. Rodnianski, Lectures on black holes and linear waves, preprint arXiv:0811.0354. Zbl1079.35069MR3098640
- [13] K. Datchev & A. Vasy, Gluing semiclassical resolvent estimates, or the importance of being microlocal, Int. Math. Res. Notices (2012), doi:10.1093/imrn/rnr255. Zbl1262.58019
- [14] M. Dimassi & J. Sjöstrand, Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series 268, Cambridge Univ. Press, 1999. Zbl0926.35002MR1735654
- [15] H. Donnelly, Exhaustion functions and the spectrum of Riemannian manifolds, Indiana Univ. Math. J.46 (1997), 505–527. Zbl0909.58055MR1481601
- [16] R. Donninger, W. Schlag & A. Soffer, On pointwise decay of linear waves on a Schwarzschild black hole background, Comm. Math. Phys.309 (2012), 51–86. Zbl1242.83054MR2864787
- [17] F. Finster, N. Kamran, J. Smoller & S.-T. Yau, Decay of solutions of the wave equation in the Kerr geometry, Comm. Math. Phys.264 (2006), 465–503. Zbl1194.83015MR2215614
- [18] C. Gérard & A. Martinez, Principe d’absorption limite pour des opérateurs de Schrödinger à longue portée, C. R. Acad. Sci. Paris Sér. I Math.306 (1988), 121–123. Zbl0672.35013MR929103
- [19] C. Guillarmou & A. Hassell, Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds. I, Math. Ann. 341 (2008), 859–896. Zbl1141.58017MR2407330
- [20] C. Guillarmou & A. Hassell, Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds. II, Ann. Inst. Fourier 59 (2009), 1553–1610. Zbl1175.58011MR2566968
- [21] W. Hunziker, I. M. Sigal & A. Soffer, Minimal escape velocities, Comm. Partial Differential Equations24 (1999), 2279–2295. Zbl0944.35014MR1720738
- [22] A. Jensen & T. Kato, Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J.46 (1979), 583–611. Zbl0448.35080MR544248
- [23] A. Jensen, É. Mourre & P. Perry, Multiple commutator estimates and resolvent smoothness in quantum scattering theory, Ann. Inst. H. Poincaré Phys. Théor.41 (1984), 207–225. Zbl0561.47007MR769156
- [24] P. D. Lax, C. S. Morawetz & R. S. Phillips, Exponential decay of solutions of the wave equation in the exterior of a star-shaped obstacle, Comm. Pure Appl. Math.16 (1963), 477–486. Zbl0161.08001MR155091
- [25] P. D. Lax & R. S. Phillips, Scattering theory, second éd., Pure and Applied Mathematics 26, Academic Press Inc., 1989. Zbl0697.35004MR1037774
- [26] R. B. Melrose & J. Sjöstrand, Singularities of boundary value problems. I, Comm. Pure Appl. Math. 31 (1978), 593–617. Zbl0368.35020MR492794
- [27] S. Nonnenmacher & M. Zworski, Quantum decay rates in chaotic scattering, Acta Math.203 (2009), 149–233. Zbl1226.35061MR2570070
- [28] V. Petkov & L. Stoyanov, Analytic continuation of the resolvent of the Laplacian and the dynamical zeta function, Anal. PDE3 (2010), 427–489. Zbl1251.37031MR2718260
- [29] J. V. Ralston, Solutions of the wave equation with localized energy, Comm. Pure Appl. Math.22 (1969), 807–823. Zbl0209.40402MR254433
- [30] J. Rauch, Local decay of scattering solutions to Schrödinger’s equation, Comm. Math. Phys.61 (1978), 149–168. Zbl0381.35023MR495958
- [31] M. Reed & B. Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press Inc., 1978. Zbl0242.46001MR493421
- [32] W. Schlag, A. Soffer & W. Staubach, Decay for the wave and Schrödinger evolutions on manifolds with conical ends. I, Trans. Amer. Math. Soc. 362 (2010), 19–52. Zbl1185.35046MR2550144
- [33] W. Schlag, A. Soffer & W. Staubach, Decay for the wave and Schrödinger evolutions on manifolds with conical ends. II, Trans. Amer. Math. Soc. 362 (2010), 289–318. Zbl1187.35032MR2550152
- [34] S.-H. Tang & M. Zworski, Resonance expansions of scattered waves, Comm. Pure Appl. Math.53 (2000), 1305–1334. Zbl1032.35148MR1768812
- [35] D. Tataru, Local decay of waves on asymptotically flat stationary space-times, preprint arXiv:0910.5290. Zbl1266.83033MR3038715
- [36] D. Tataru & M. Tohaneanu, A local energy estimate on Kerr black hole backgrounds, Int. Math. Res. Not.2011 (2011), 248–292. Zbl1209.83028MR2764864
- [37] M. E. Taylor, Partial differential equations. I, Applied Mathematical Sciences 115, Springer, 1996. Zbl0869.35002MR1395148
- [38] B. R. Vaĭnberg, Asymptotic methods in equations of mathematical physics, Gordon & Breach Science Publishers, 1989. Zbl0743.35001
- [39] A. Vasy & J. Wunsch, Positive commutators at the bottom of the spectrum, J. Funct. Anal.259 (2010), 503–523. Zbl1194.35292MR2644111
- [40] X. P. Wang, Time-decay of scattering solutions and classical trajectories, Ann. Inst. H. Poincaré Phys. Théor.47 (1987), 25–37. Zbl0641.35018MR912755
- [41] X. P. Wang, Asymptotic expansion in time of the Schrödinger group on conical manifolds, Ann. Inst. Fourier56 (2006), 1903–1945. Zbl1118.35022MR2282678
- [42] J. Wunsch & M. Zworski, Resolvent estimates for normally hyperbolic trapped sets, Ann. Henri Poincaré12 (2011), 1349–1385. Zbl1228.81170MR2846671
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.