Solution of the congruence subgroup problem for S L n ( n 3 ) and S p 2 n ( n 2 )

Hyman Bass; John Milnor; Jean-Pierre Serre

Publications Mathématiques de l'IHÉS (1967)

  • Volume: 33, page 59-137
  • ISSN: 0073-8301

How to cite

top

Bass, Hyman, Milnor, John, and Serre, Jean-Pierre. "Solution of the congruence subgroup problem for $SL_n (n \ge 3)$ and $Sp_{2n} (n \ge 2)$." Publications Mathématiques de l'IHÉS 33 (1967): 59-137. <http://eudml.org/doc/103876>.

@article{Bass1967,
author = {Bass, Hyman, Milnor, John, Serre, Jean-Pierre},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {group theory},
language = {eng},
pages = {59-137},
publisher = {Institut des Hautes Études Scientifiques},
title = {Solution of the congruence subgroup problem for $SL_n (n \ge 3)$ and $Sp_\{2n\} (n \ge 2)$},
url = {http://eudml.org/doc/103876},
volume = {33},
year = {1967},
}

TY - JOUR
AU - Bass, Hyman
AU - Milnor, John
AU - Serre, Jean-Pierre
TI - Solution of the congruence subgroup problem for $SL_n (n \ge 3)$ and $Sp_{2n} (n \ge 2)$
JO - Publications Mathématiques de l'IHÉS
PY - 1967
PB - Institut des Hautes Études Scientifiques
VL - 33
SP - 59
EP - 137
LA - eng
KW - group theory
UR - http://eudml.org/doc/103876
ER -

References

top
  1. [1] BASS (H.), K-theory and stable algebra, Publ. I.H.E.S., n° 22 (1964), 5-60. Zbl0248.18025MR30 #4805
  2. [2] BASS (H.), Symplectic modules and groups (in preparation). 
  3. [3] BASS (H.), HELLER (A.) and SWAN (R.), The Whitehead group of a polynomial extension, Publ. I.H.E.S., n° 22 (1964), 61-79. Zbl0248.18026MR30 #4806
  4. [4] BASS (H.), LAZARD (M.) and SERRE (J.-P.), Sous-groupes d'indice fini dans SL(n, Z), Bull. Am. Math. Soc., 385-392. Zbl0232.20086MR28 #5117
  5. [5] BASS (H.) and MILNOR (J.), Unimodular groups over number fields (mimeo. notes), Princeton University (1965). 
  6. [6] BASS (H.) and MILNOR (J.), On the congruence subgroup problem for SLn(n≥3) and Sp2n(n≥2). (Notes, Inst. for Adv. Study.) 
  7. [7] BASS (H.) and MURTHY (M. P.), Grothendieck groups and Picard groups of abelian group rings, Ann. of Math., 86 (1967), 16-73. Zbl0157.08202MR36 #2671
  8. [8] BOREL (A.) and HARISH-CHANDRA, Arithmetic subgroups of algebraic groups, Ann. of Math., 75 (1962), 485-535. Zbl0107.14804MR26 #5081
  9. [9] BOREL (A.) and TITS (J.), Groupes réductifs, Publ. I.H.E.S., n° 27 (1965), 55-151. Zbl0145.17402MR34 #7527
  10. [10] CHEVALLEY (C.), Sur certains schémas de groupes semi-simples, Sém. Bourbaki (1961), exposé 219. Zbl0125.01705
  11. [11] HIGMAN (G.), On the units of group rings, Proc. Lond. Math. Soc., 46 (1940), 231-248. Zbl0025.24302MR2,5bJFM66.0104.04
  12. [12] HURWITZ (A.), Die unimodularen Substitutionen in einem algebraischen Zahlkörpen (1895), Mathematische Werke, vol. 2, 244-268, Basel (1933). 
  13. [13] KNESER (M.), Strong approximation, I, II, Algebraic groups and discontinuous subgroups, Proc. Symp. Pure Math., IX, A.M.S., 1966, p. 187-196. Zbl0201.37904MR35 #4225
  14. [14] KUBOTA (T.), Ein arithmetischer Satz über eine Matrizengrouppe, J. reine angew. Math., 222 (1965), 55-57. Zbl0149.28602MR32 #5633
  15. [15] MATSUMOTO (H.), Subgroups of finite index of arithmetic groups. Algebraic groups and Discontinuous Subgroups, Proc. Symp. Pure Math., IX, A.M.S., 1966, p. 99-103. Zbl0178.35302MR34 #4373
  16. [16] MENNICKE (J.), Finite factor groups of the unimodular group, Ann. of Math., 81 (1965), 31-37. Zbl0135.06504MR30 #2083
  17. [17] MENNICKE (J.), Zur theorie der Siegelsche Modulgruppe, Math. Ann., 159 (1965), 115-129. Zbl0134.26502MR31 #5903
  18. [18] MILNOR (J.), Whitehead torsion, Bull. Am. Math. Soc., 7 (1966), 358-426. Zbl0147.23104MR33 #4922
  19. [19] MOORE (C.), Extensions and low dimensional cohomology of locally compact groups, I, Trans. Am. Math. Soc., 113 (1964), 40-63. Zbl0131.26902MR30 #2106
  20. [20] O'MEARA (O. T.), On the finite generation of linear groups over Hasse domains, J. reine angew. Math., 217 (1963). Zbl0128.25502MR31 #3513
  21. [21] RAGHUNATHAN (M. S.), A vanishing theorem for the cohomology of arithmetic subgroups of algebraic groups (to appear). 
  22. [22] REGE (N.), Finite generation of classical groups over Hasse domains (to appear). Zbl0157.06201
  23. [23] LAZARD (M.), Groupes analytiques p-adiques, Publ. I.H.E.S., n° 26 (1965), 5-219. Zbl0139.02302MR35 #188
  24. [24] WEIL (A.), Remarks on the cohomology of groups, Ann. of Math., 80 (1964), 149-157. Zbl0192.12802MR30 #199
  25. [25] WEIL (A.), Sur certains groupes d'opérateurs unitaires, Acta Math., III (1964), 143-211. Zbl0203.03305MR29 #2324

Citations in EuDML Documents

top
  1. Thomas Laffey, Conjugacy and factorization results on matrix groups
  2. Hyman Bass, Libération des modules projectifs sur certains anneaux de polynômes
  3. Talia Fernós, Relative property (T) and linear groups
  4. Madabusi S. Raghunathan, On the congruence subgroup problem
  5. Yehuda Shalom, Bounded generation and Kazhdan’s property ( T )
  6. David Mauger, Algèbres de Hecke quasi-ordinaires universelles
  7. Max Karoubi, Localisation de formes quadratiques. II
  8. Max Karoubi, Localisation de formes quadratiques I
  9. David A. Kazhdan, S. J. Patterson, Metaplectic forms
  10. Jim W. Cogdell, Igor I. Piatetski-Shapiro, Converse theorems for G L n

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.