The arithmetic theory of loop groups

Howard Garland

Publications Mathématiques de l'IHÉS (1980)

  • Volume: 52, page 5-136
  • ISSN: 0073-8301

How to cite

top

Garland, Howard. "The arithmetic theory of loop groups." Publications Mathématiques de l'IHÉS 52 (1980): 5-136. <http://eudml.org/doc/103971>.

@article{Garland1980,
author = {Garland, Howard},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {existence of Chevalley lattice; Chevalley group; Kac-Moody Lie algebra; arithmetic subgroup; infinite-dimensional representation},
language = {eng},
pages = {5-136},
publisher = {Institut des Hautes Études Scientifiques},
title = {The arithmetic theory of loop groups},
url = {http://eudml.org/doc/103971},
volume = {52},
year = {1980},
}

TY - JOUR
AU - Garland, Howard
TI - The arithmetic theory of loop groups
JO - Publications Mathématiques de l'IHÉS
PY - 1980
PB - Institut des Hautes Études Scientifiques
VL - 52
SP - 5
EP - 136
LA - eng
KW - existence of Chevalley lattice; Chevalley group; Kac-Moody Lie algebra; arithmetic subgroup; infinite-dimensional representation
UR - http://eudml.org/doc/103971
ER -

References

top
  1. [1] A. BOREL, Introduction aux groupes arithmétiques, Paris, Hermann, 1969. Zbl0186.33202MR39 #5577
  2. [2] A. BOREL, Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup, Inventiones math., 35 (1976), 233-259. Zbl0334.22012MR56 #3196
  3. [3] N. BOURBAKI, Groupes et algèbres de Lie, chap. 4, 5 et 6, Paris, Hermann, 1968. 
  4. [4] F. BRUHAT et J. TITS, Groupes réductifs sur un corps local, Publ. Math. I.H.E.S., 41 (1972), 1-251. Zbl0254.14017MR48 #6265
  5. [5] F. BRUHAT et J. TITS, Groupes algébriques simples sur un corps local, in the Proceedings of a Conference on Local Fields, held at Driebergen (The Netherlands), Edited by T. A. SPRINGER, New York, Springer-Verlag, 1967, pp. 23-36. Zbl0263.14016MR37 #6396
  6. [6] H. GARLAND, Dedekind's η-function and the cohomology of infinite dimensional Lie algebras, Proc. Nat. Acad. Sci. (U.S.A.), 72 (1975), 2493-2495. Zbl0322.18010MR52 #8204
  7. [7] H. GARLAND, The arithmetic theory of loop algebras, J. Algebra, 53 (1978), 480-551. Zbl0383.17012MR80a:17012
  8. [8] H. GARLAND and J. LEPOWSKY, Lie algebra homology and the Macdonald-Kac formulas, Inventions math., 34 (1976), 37-76. Zbl0358.17015MR54 #2744
  9. [9] N. IWAHORI and H. MATSUMOTO, On some Bruhat decomposition and the structure of the Hecke rings of p-adic Chevalley groups, Publ. Math. I.H.E.S., 25 (1965), 237-280. Zbl0228.20015MR32 #2486
  10. [10] V. G. KAC, Simple irreductible graded Lie algebras of finite growth (in Russian), Izv. Akad. Nauk. SSSR, 32 (1968), 1323-1367 ; English translation : Math. USSR-Izvestija, 2 (1968), 1271-1311. Zbl0222.17007
  11. [11] V. G. KAC, Infinite-dimensional Lie algebras and Dedekind's η-function (in Russian), Funkt. Anal. i Ego Prilozheniya, 8 (1974), 77-78 ; English translation : Functional Analysis and its Applications, 8 (1974), 68-70. Zbl0299.17005MR51 #10410
  12. [12] R. MARCUSON, Tits systems in generalized nonadjoint Chevalley groups, J. Algebra, 34 (1975), 84-96. Zbl0338.20054MR53 #3146
  13. [13] H. MATSUMOTO, Sur les sous-groupes arithmétiques des groupes semi-simples déployés, Ann. Scient. Éc. Norm. Sup., 2 (4th series) (1969), 1-62. Zbl0261.20025MR39 #1566
  14. [14] J. MILNOR, Introduction to algebraic K-theory, Princeton, Princeton University Press, 1971. Zbl0237.18005MR50 #2304
  15. [15] R. V. MOODY, A new class of Lie algebras, J. Algebra, 10 (1968), 211-230. Zbl0191.03005MR37 #5261
  16. [16] R. V. MOODY, Euclidean Lie algebras, Can. J. Math., 21 (1969), 1432-1454. Zbl0194.34402MR41 #287
  17. [17] R. V. MOODY and K. L. TEO, Tits' systems with crystallographic Weyl groups, J. Algebra, 21 (1972), 178-190. Zbl0232.20089MR47 #8705
  18. [18] C. C. MOORE, Group extensions of p-adic and adelic linear groups, Publ. Math. I.H.E.S., 35 (1968), 157-222. Zbl0159.03203MR39 #5575
  19. [19] J.-P. SERRE, Algèbres de Lie semi-simples complexes, New York, Benjamin, 1966. Zbl0144.02105MR35 #6721
  20. [20] R. STEINBERG, Générateurs, relations et revêtements de groupes algébriques, in Colloque sur la Théorie des Groupes algébriques, held in Brussels, 1962, Paris, Gauthier-Villars, 1962, pp. 113-127. Zbl0272.20036MR27 #3638
  21. [21] R. STEINBERG, Lectures on Chevalley groups, Yale University mimeographed notes, 1967. 

Citations in EuDML Documents

top
  1. Christian Kassel, Jean-Louis Loday, Extensions centrales d'algèbres de Lie
  2. Michel Crétin, Algèbres de Lie semi-simples et affines
  3. Pierre Cartier, Homologie cyclique : rapport sur des travaux récents de Connes, Karoubi, Loday, Quillen...
  4. Daniel Guin, Cohomologie des algèbres de Lie croisées et K -théorie de Milnor additive
  5. Peter Slodowy, A character approach to Looijenga's invariant theory for generalized root systems
  6. Jacques Tits, Groupes associés aux algèbres de Kac-Moody
  7. Jean-Luc Brylinski, Pierre Deligne, Central extensions of reductive groups by K 2

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.