Calculating cohomology groups of moduli spaces of curves via algebraic geometry
Enrico Arbarello; Maurizio Cornalba
Publications Mathématiques de l'IHÉS (1998)
- Volume: 88, page 97-127
- ISSN: 0073-8301
Access Full Article
topHow to cite
topArbarello, Enrico, and Cornalba, Maurizio. "Calculating cohomology groups of moduli spaces of curves via algebraic geometry." Publications Mathématiques de l'IHÉS 88 (1998): 97-127. <http://eudml.org/doc/104137>.
@article{Arbarello1998,
author = {Arbarello, Enrico, Cornalba, Maurizio},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {rational cohomology groups of moduli space of stable -pointed genus curves},
language = {eng},
pages = {97-127},
publisher = {Institut des Hautes Études Scientifiques},
title = {Calculating cohomology groups of moduli spaces of curves via algebraic geometry},
url = {http://eudml.org/doc/104137},
volume = {88},
year = {1998},
}
TY - JOUR
AU - Arbarello, Enrico
AU - Cornalba, Maurizio
TI - Calculating cohomology groups of moduli spaces of curves via algebraic geometry
JO - Publications Mathématiques de l'IHÉS
PY - 1998
PB - Institut des Hautes Études Scientifiques
VL - 88
SP - 97
EP - 127
LA - eng
KW - rational cohomology groups of moduli space of stable -pointed genus curves
UR - http://eudml.org/doc/104137
ER -
References
top- [1] E. ARBARELLO, M. CORNALBACombinatorial and algebro-geometric cohomology classes on the moduli spaces of curves, J. Alg. Geom. 5 (1996), 705-749. Zbl0886.14007MR99c:14033
- [2] M. BOGGI, M. PIKAART, Galois covers of moduli of curves, preprint 1997. Zbl0959.14010
- [3] M. CORNALBA, On the projectivity of the moduli spaces of curve, J. reine angew. Math. 443 (1993), 11-20. Zbl0781.14017MR94i:14031
- [4] P. DELIGNE, Théorie de Hodge III, I.H.E.S. Publ. Math. 44 (1974), 5-77. Zbl0237.14003MR58 #16653b
- [5] C. FABER, Chow rings of moduli spaces of curves, thesis, Universiteit van Amsterdam, 1988.
- [6] E. GETZLER, The semi-classical approximation for modular operads, Comm. Math. Phys. 194 (1998) 481-492. Zbl0912.18007MR99d:14017
- [7] E. GETZLER, Topological recursion relations in genus 2, math.AG/9801003. Zbl1021.81056
- [8] J. HARER, The second homology group of the mapping class group of an orientable surface, Inv. Math. 72 (1982), 221-239. Zbl0533.57003MR84g:57006
- [9] J. HARER, The virtual cohomological dimension of the mapping class group of an orientable surface, Inv. Math. 84 (1986), 157-176. Zbl0592.57009MR87c:32030
- [10] J. HARER, The third homology group of the moduli space of curves, Duke Math. J. 65 (1991), 25-55. Zbl0725.57005MR92d:57012
- [11] J. HARER, The fourth homology group of the moduli space of curves, to appear. Zbl0725.57005
- [12] J. HARRIS, David MUMFORD, On the Kodaira dimension of the moduli space of curves, Inv. Math. 67 (1982), 23-86. Zbl0506.14016MR83i:14018
- [13] S. KEEL, Intersection theory of moduli space of stable N-pointed curves of genus zero, Trans. AMS 330 (1992), 545-574. Zbl0768.14002MR92f:14003
- [14] E. LOOIJENGA, Cohomology of ℳ3 and ℳ¹3, in “Mapping class groups and moduli spaces of Riemann surfaces” (C.F. Bödigheimer and R. M. Hain, eds.), Contemp. Math. 150, Amer. Math. Soc., Providence, RI, 1993, pp. 205-228. Zbl0814.14029MR94i:14032
- [15] E. LOOIJENGA, Smooth Deligne-Mumford compactifications by means of Prym level structures, J. Alg. Geom. 3 (1994), 283-293. Zbl0814.14030MR94m:14029
- [16] E. LOOIJENGA, Cellular decompositions of compactified moduli spaces of pointed curves, in “The Moduli Space of Curves” (R. Dijkgraaf, C. Faber, G. van der Geer, eds.), Progress in Mathematics 12, Birkhauser, Boston, (1995), 369-399. Zbl0862.14017MR96m:14031
- [17] D. MUMFORD, Stability of projective varieties, L'Ens. Math. 23 (1977), 39-110. Zbl0363.14003MR56 #8568
- [18] D. MUMFORD, Towards an enumerative geometry of the moduli space of curves, in “Arithmetic and Geometry”, (M. Artin, J. Tate, eds), 2, Birkhäuser, Boston (1983), 271-328. Zbl0554.14008MR85j:14046
Citations in EuDML Documents
top- Mehdi Tavakol, The tautological ring of
- Marzia Polito, The fourth tautological group of and relations with the cohomology
- Gavril Farkas, Mircea Mustaţǎ, Mihnea Popa, Divisors on Mg,g+1 and the minimal resolution conjecture for points on canonical curves
- Gérard Freixas Montplet, An arithmetic Riemann-Roch theorem for pointed stable curves
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.