Kaplansky classes

Edgar E. Enochs; J. A. López-Ramos

Rendiconti del Seminario Matematico della Università di Padova (2002)

  • Volume: 107, page 67-79
  • ISSN: 0041-8994

How to cite

top

Enochs, Edgar E., and López-Ramos, J. A.. "Kaplansky classes." Rendiconti del Seminario Matematico della Università di Padova 107 (2002): 67-79. <http://eudml.org/doc/108585>.

@article{Enochs2002,
author = {Enochs, Edgar E., López-Ramos, J. A.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {67-79},
publisher = {Seminario Matematico of the University of Padua},
title = {Kaplansky classes},
url = {http://eudml.org/doc/108585},
volume = {107},
year = {2002},
}

TY - JOUR
AU - Enochs, Edgar E.
AU - López-Ramos, J. A.
TI - Kaplansky classes
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2002
PB - Seminario Matematico of the University of Padua
VL - 107
SP - 67
EP - 79
LA - eng
UR - http://eudml.org/doc/108585
ER -

References

top
  1. [1] M. AUSLANDER, Anneaux de Gorenstein et torsion en alègebre commutative, Séminaire d’algèbre commutative 1966/67, notes by M. Mangeney, C. Peskine and L. Szpiro, École Normale Supérieure de Jeunes Filles, Paris (1967). 
  2. [2] L. BICAN - R. EL BASHIR - E. E. ENOCHS, Modules have flat covers, to appear in Bull. London Math. Soc. Zbl1029.16002MR1832549
  3. [3] N. DING - J. CHEN, Coherent rings with finite self-FP-injective dimension, Comm. Algebra, 24 (9) (1996), pp. 2963-2980. Zbl0855.16001MR1396867
  4. [4] P. EKLOF - J. TRLIFAJ, How to make Ext vanish, to appear in J. Lond. Math. Soc. Zbl1030.16004MR1798574
  5. [5] E. ENOCHS, Injective and flat covers, envelopes and resolvents, Israel J. Math., 39 (3), (1981), pp. 189-209. Zbl0464.16019MR636889
  6. [6] E. ENOCHS - O. M. G. JENDA, Balanced Functors Applied to Modules, J. Algebra, 92 (1985), pp. 303-310. Zbl0554.18006MR778450
  7. [7] E. E. ENOCHS - O. M. G. JENDA - B. TORRECILLAS, Gorenstein flat modules, Nanjing Daxue Xuebao Shuxue Bannian Kan, 10 (1993), pp. 1-9. Zbl0794.16001MR1248299
  8. [8] E. E. ENOCHS - O. M. G. JENDA - J. XU, Covers and envelopes over Gorenstein rings, Tsukuba J. Math., 20 (1996), pp. 487-503. Zbl0895.16001MR1422636
  9. [9] E. E. ENOCHS - O. M. G. JENDA, Relative Homological Algebra, De Gruyter, Berlin - New York (2000). Zbl0952.13001MR1753146
  10. [10] E. E. ENOCHS - O. M. G. JENDA - L. OYONARTE, l and m-dimensions of modules, to appear in Rend. Sem. Mat. Univ. Padova, 105 (2001). Zbl1072.16011MR1834984
  11. [11] M. HOVEY, Cotorsion Theories, Model Category Structures and Representation Theory, preprint. 
  12. [12] C. JENSEN, Les Foncteurs Dérivés de lim J et leur Applications en Théorie des Modules, Lecture Notes in Math. 254, Springer-Verlag (1972). Zbl0238.18007MR407091
  13. [13] I. KAPLANSKY, Projective Modules, Ann. of Math., 68 (2) (1958), pp. 372-377. Zbl0083.25802MR100017
  14. [14] F. MAEDA, Kontinuerliche Geometrien, Springer-Verlag, Berlin (1958). MR90579
  15. [15] L. SALCE, Cotorsion theories for abelian groups, «Symposia Mathematica» Vol. XXIII, pp. 11-32, Academic Press, London - New York (1979). Zbl0426.20044MR565595
  16. [16] C. WALKER, Relative homological algebra and Abelian groups, Illinois J. Math., 10 (1966), pp. 186-209. Zbl0136.25601MR190210
  17. [17] J. XU, Flat covers of modules, Lecture Notes in Math. 1634, Springer-Verlag, (1996). Zbl0860.16002MR1438789

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.