Kaplansky classes
Edgar E. Enochs; J. A. López-Ramos
Rendiconti del Seminario Matematico della Università di Padova (2002)
- Volume: 107, page 67-79
- ISSN: 0041-8994
Access Full Article
topHow to cite
topEnochs, Edgar E., and López-Ramos, J. A.. "Kaplansky classes." Rendiconti del Seminario Matematico della Università di Padova 107 (2002): 67-79. <http://eudml.org/doc/108585>.
@article{Enochs2002,
author = {Enochs, Edgar E., López-Ramos, J. A.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {67-79},
publisher = {Seminario Matematico of the University of Padua},
title = {Kaplansky classes},
url = {http://eudml.org/doc/108585},
volume = {107},
year = {2002},
}
TY - JOUR
AU - Enochs, Edgar E.
AU - López-Ramos, J. A.
TI - Kaplansky classes
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2002
PB - Seminario Matematico of the University of Padua
VL - 107
SP - 67
EP - 79
LA - eng
UR - http://eudml.org/doc/108585
ER -
References
top- [1] M. AUSLANDER, Anneaux de Gorenstein et torsion en alègebre commutative, Séminaire d’algèbre commutative 1966/67, notes by M. Mangeney, C. Peskine and L. Szpiro, École Normale Supérieure de Jeunes Filles, Paris (1967).
- [2] L. BICAN - R. EL BASHIR - E. E. ENOCHS, Modules have flat covers, to appear in Bull. London Math. Soc. Zbl1029.16002MR1832549
- [3] N. DING - J. CHEN, Coherent rings with finite self-FP-injective dimension, Comm. Algebra, 24 (9) (1996), pp. 2963-2980. Zbl0855.16001MR1396867
- [4] P. EKLOF - J. TRLIFAJ, How to make Ext vanish, to appear in J. Lond. Math. Soc. Zbl1030.16004MR1798574
- [5] E. ENOCHS, Injective and flat covers, envelopes and resolvents, Israel J. Math., 39 (3), (1981), pp. 189-209. Zbl0464.16019MR636889
- [6] E. ENOCHS - O. M. G. JENDA, Balanced Functors Applied to Modules, J. Algebra, 92 (1985), pp. 303-310. Zbl0554.18006MR778450
- [7] E. E. ENOCHS - O. M. G. JENDA - B. TORRECILLAS, Gorenstein flat modules, Nanjing Daxue Xuebao Shuxue Bannian Kan, 10 (1993), pp. 1-9. Zbl0794.16001MR1248299
- [8] E. E. ENOCHS - O. M. G. JENDA - J. XU, Covers and envelopes over Gorenstein rings, Tsukuba J. Math., 20 (1996), pp. 487-503. Zbl0895.16001MR1422636
- [9] E. E. ENOCHS - O. M. G. JENDA, Relative Homological Algebra, De Gruyter, Berlin - New York (2000). Zbl0952.13001MR1753146
- [10] E. E. ENOCHS - O. M. G. JENDA - L. OYONARTE, l and m-dimensions of modules, to appear in Rend. Sem. Mat. Univ. Padova, 105 (2001). Zbl1072.16011MR1834984
- [11] M. HOVEY, Cotorsion Theories, Model Category Structures and Representation Theory, preprint.
- [12] C. JENSEN, Les Foncteurs Dérivés de lim J et leur Applications en Théorie des Modules, Lecture Notes in Math. 254, Springer-Verlag (1972). Zbl0238.18007MR407091
- [13] I. KAPLANSKY, Projective Modules, Ann. of Math., 68 (2) (1958), pp. 372-377. Zbl0083.25802MR100017
- [14] F. MAEDA, Kontinuerliche Geometrien, Springer-Verlag, Berlin (1958). MR90579
- [15] L. SALCE, Cotorsion theories for abelian groups, «Symposia Mathematica» Vol. XXIII, pp. 11-32, Academic Press, London - New York (1979). Zbl0426.20044MR565595
- [16] C. WALKER, Relative homological algebra and Abelian groups, Illinois J. Math., 10 (1966), pp. 186-209. Zbl0136.25601MR190210
- [17] J. XU, Flat covers of modules, Lecture Notes in Math. 1634, Springer-Verlag, (1996). Zbl0860.16002MR1438789
Citations in EuDML Documents
top- Gang Yang, Zhongkui Liu, Li Liang, On Gorenstein flat preenvelopes of complexes
- Edgar E. Enochs, Hae-Sik Kim, Some remarks on global dimensions for cotorsion pairs
- Elham Tavasoli, Maryam Salimi, Relative Gorenstein injective covers with respect to a semidualizing module
- Xiaorui Zhai, Chunxia Zhang, Cartan-Eilenberg projective, injective and flat complexes
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.