Le groupe fondamental du complément d'une courbe plane n'ayant que des points doubles ordinaires est abélien

Pierre Deligne

Séminaire Bourbaki (1979-1980)

  • Volume: 22, page 1-10
  • ISSN: 0303-1179

How to cite

top

Deligne, Pierre. "Le groupe fondamental du complément d'une courbe plane n'ayant que des points doubles ordinaires est abélien." Séminaire Bourbaki 22 (1979-1980): 1-10. <http://eudml.org/doc/109954>.

@article{Deligne1979-1980,
author = {Deligne, Pierre},
journal = {Séminaire Bourbaki},
keywords = {complement to node curves; fundamental group; Zariski conjecture},
language = {fre},
pages = {1-10},
publisher = {Springer-Verlag},
title = {Le groupe fondamental du complément d'une courbe plane n'ayant que des points doubles ordinaires est abélien},
url = {http://eudml.org/doc/109954},
volume = {22},
year = {1979-1980},
}

TY - JOUR
AU - Deligne, Pierre
TI - Le groupe fondamental du complément d'une courbe plane n'ayant que des points doubles ordinaires est abélien
JO - Séminaire Bourbaki
PY - 1979-1980
PB - Springer-Verlag
VL - 22
SP - 1
EP - 10
LA - fre
KW - complement to node curves; fundamental group; Zariski conjecture
UR - http://eudml.org/doc/109954
ER -

References

top
  1. [1] S. Abhyankar - Tame coverings and fundamental groups of algebraic varieties I , Amer. J. of Math., 81(1959), 46-94. Zbl0100.16401MR104675
  2. [2] D. Cheniot - Un théorème du type de Lefschetz, Annales de l'Institut Fourier, 251(1975), 195-213. Zbl0332.14007MR389909
  3. [2 bis] D. Cheniot - Une démonstration du théorème de Zariski sur les sections hyper-planes d'une hypersurface projective et du théorème de Van Kampen sur le groupe fondamental du complémentaire d'une courbe plane, Comp. Math., 272 (1973) , 141-158. Zbl0294.14010MR366922
  4. [3] W. Fulton - On the fundamental group of the complement of a node curve, Ann. of Math., 1112(1980), 407-409. Zbl0406.14008MR569076
  5. [4] W. Fulton and J. Hansen - A connectedness theorem for projective varieties, with applications to intersections and singularities of mappings, Ann. of Math., 1091 (1979) , 159-166. Zbl0389.14002MR541334
  6. [5] T. Gaffney and R. Lazarsfeld - On the ramification of branched coverings of Pn , Inv. Math., 591(1980), 53-58. Zbl0422.14010MR575080
  7. [6] H. Hamm et Lê Dung Trang - Un théorème de Zariski du type de Lefschetz, Ann. Sci. E.N.S., 63(1973), 317-366. Zbl0276.14003MR401755
  8. [7] J.-P. Serre - Revêtements ramifiés du plan projectif (d'après S. Abhyankar), Sém. Bourbaki 204, mai 1960. Zbl0115.38403
  9. [8] O. Zariski - On the problem of existence of algebraic functions of two variables possessing a given branch curve, Amer. J. of Math., 51(1929), 305-328. Zbl55.0806.01MR1506719JFM55.0806.01
  10. [9] O. Zariski - Algebraic surfaces, second supplemented edition, Ergebnisse 61, Springer-Verlag. Zbl0219.14020MR469915
  11. Je viens (1/10/80) de recevoir un très bel exposé, faisant le point sur les méthodes étudiées ici, leurs variantes et leurs nombreuses applications : W. Fulton and R. Lazarsfeld - Connectivity and its applications in algebraic geometry. 

Citations in EuDML Documents

top
  1. Nicholas M. Katz, A conjecture in the arithmetic theory of differential equations
  2. Madhav V. Nori, Zariski's conjecture and related problems
  3. Helmut A. Hamm, Lê Dũng Tráng, Lefschetz theorems on quasi-projective varieties
  4. Mario Salvetti, Arrangements of lines and monodromy of plane curves
  5. G. Dethloff, M. Zaidenberg, Plane curves with hyperbolic and C -hyperbolic complements
  6. Michel Berthier, Dominique Cerveau, Quelques calculs de cohomologie relative
  7. José Ignacio Cogolludo-Agustín, Braid Monodromy of Algebraic Curves
  8. François Loeser, Déformations de courbes planes

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.