Solutions périodiques de systèmes hamiltoniens
Séminaire Bourbaki (1982-1983)
- Volume: 25, page 105-128
- ISSN: 0303-1179
Access Full Article
topHow to cite
topBerestycki, Henri. "Solutions périodiques de systèmes hamiltoniens." Séminaire Bourbaki 25 (1982-1983): 105-128. <http://eudml.org/doc/110002>.
@article{Berestycki1982-1983,
author = {Berestycki, Henri},
journal = {Séminaire Bourbaki},
keywords = {Palais-Smale condition; Arnold conjecture; dual action principle; convex Hamiltonians; periodic Hamiltonian},
language = {fre},
pages = {105-128},
publisher = {Société Mathématique de France},
title = {Solutions périodiques de systèmes hamiltoniens},
url = {http://eudml.org/doc/110002},
volume = {25},
year = {1982-1983},
}
TY - JOUR
AU - Berestycki, Henri
TI - Solutions périodiques de systèmes hamiltoniens
JO - Séminaire Bourbaki
PY - 1982-1983
PB - Société Mathématique de France
VL - 25
SP - 105
EP - 128
LA - fre
KW - Palais-Smale condition; Arnold conjecture; dual action principle; convex Hamiltonians; periodic Hamiltonian
UR - http://eudml.org/doc/110002
ER -
References
top- [1] R. Abraham, J.E. Marsden - Foundations of Mechanics, 2nd edition, Benjamin, New York (1967). Zbl0158.42901
- [2] H. Amann, E. Zehnder - Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations, Annali Scuola Norm. Sup. Pisa Serie IV, 7(1980), 539-603. Zbl0452.47077MR600524
- [3] H. Amann, E. Zehnder - Periodic solutions of asymptotically linear hamiltonian systems, Manuscripta Math.32(1980), 149-189. Zbl0443.70019MR592715
- [4] A. Ambrosetti, G. Mancini - On a theorem by Ekeland and Lasry concerning the number of periodic hamiltonian trajectories, J. Diff. Equ.43(1981), 1-6. Zbl0492.70018
- [5] A. Ambrosetti, G. Mancini - Solutions of minimal period for a class of convex hamiltonian systems, Preprint. MR615860
- [6] A. Ambrosetti, P.H. Rabinowitz - Dual variational methods in critical point theory and applications, J. Funct. Anal.14(1973), 349-381. Zbl0273.49063MR370183
- [7] V.I. Arnold - Méthodes mathématiques de la mécanique classique, Editions Mir, Moscou (1976). Zbl0385.70001MR474391
- [8] V.I. Arnold, A. Avez - Problèmes ergodiques de la mécanique classique, Gauthier-Villars, Paris (1967). Zbl0149.21704MR209436
- [9] J.-P. Aubin - Variational principles for differential equations of elliptic, parabolic and hyperbolic type, Cahiers CEREMADE n° 7912, Univ. Paris-Dauphine. Zbl0481.49008
- [10] J.-P. Aubin, I. Ekeland - Second order evolution equations associated with convex hamiltonians, Bull. Canad. Math. (1979). Zbl0429.35042MR573562
- [11] J.F.G. Auchmuty, R. Beals - Variational solutions of some nonlinear free boundary problems, Arch. Ration. Mech. Anal.43(1971), 255-271. Zbl0225.49013MR337260
- [12] A. Bahri - Groupes d'homotopie des ensembles de niveaux pour certaines fonctionnelles à gradient Fredholm, à paraître.
- [13] A. Bahri, H. Berestycki - Forced vibrations of superquadratic hamiltonian systems, Acta Math. (1983), sous presse. Zbl0592.70027MR741053
- [14] A. Bahri, H. Berestycki - Existence of forced oscillations for some nonlinear differential equations, Comm. Pure Applied Math. (1983), sous presse. Zbl0588.34028MR745324
- [15] V. Benci - Some critical point theorems and applications, Comm. Pure Applied Math.33(1980), 147-172. Zbl0472.58009MR562548
- [16] V. Benci - On critical point theory for indefinite functionals in the presence of symmetries, Trans. Amer. Math. Soc.274(1982), 533-572. Zbl0504.58014MR675067
- [17] V. Benci - A geometrical index for the group S1 and some applications to the research of periodic solutions of O.D.E. 's, Comm. Pure Appl. Math.34(1981), 393-432. Zbl0447.34040MR615624
- [18] V. Benci, P.H. Rabinowitz - Critical point theorems for indefinite functionals, Invent. Math.52(1979), 241-273. Zbl0465.49006MR537061
- [19] H. Berestycki - Orbites périodiques de systèmes conservatifs, Sém. Goulaouic-Meyer-Schwartz, Exposé n° XXIV, 1981-82, Ec. Polytechnique, Palaiseau. Zbl0513.70020MR671621
- [20] H. Berestycki, H. Brezis - On a free boundary problem arising in plasma physics, Nonlinear Analysis, T.M.A.4(1980), 415-436. Zbl0437.35032MR574364
- [21] H. Berestycki, J.M. Lasry - A topological method for the existence of periodic orbits to conservative systems, Preprint.
- [22] H. Berestycki, J.M. Lasry, G. Mancini, B. Ruf - Existence of multiple periodic orbits on star-shaped hamiltonian surfaces, Preprint. Zbl0542.58029MR784474
- [23] M.S. Berger - Nonlinearity and functional analysis, Academic Press, New York (1987). Zbl0368.47001MR488101
- [24] M.S. Berger - On a family of periodic solutions for hamiltonian systems, J. Diff. Equ.10(1971), 324-335. Zbl0237.34067MR292113
- [25] H. Brezis - Periodic solutions of nonlinear vibrating strings and duality principle, Bull. A.M.S., à paraître. Zbl0515.35060
- [26] H. Brezis, J.M. Coron - Periodic solutions of nonlinear wave equations and hamiltonian systems, Amer. J. of Math.103(1980), 559-570. Zbl0462.35004MR618324
- [27] H. Brezis, J.M. Coron, L. Nirenberg - Free vibrations for a nonlinear wave equation and a theorem of P. Rabinowitz, Comm. Pure Appl. Math.33(1980), 667-684. Zbl0484.35057MR586417
- [28] H. Brezis, I. Ekeland - Un principe variationnel associé à certaines équations paraboliques, C.R.A.S.282(1976), 971-974 et 1197-1198. Zbl0334.35040
- [29] K.C. Chang - Solutions of asymptotically linear operator equations via Morse theory, Comm. Pure Appl. Math.34(1981), 639-712. Zbl0444.58008MR622618
- [30] F. Clarke - A classical variational principle for periodic hamiltonian trajectories, Proc. Amer. Math. Soc.76(1979), 186-188. Zbl0434.70022MR534415
- [31] F. Clarke - Periodic solutions to hamiltonian inclusions, J. Diff. Equ.40(1981), 1-6. Zbl0461.34030MR614215
- [32] F. Clarke, I. Ekeland - Hamiltonian trajectories having prescribed minimal period, Comm. Pure Appl. Math.33(1980), 103-116. Zbl0403.70016MR562546
- [33] C. Conley - Isolated invariant sets and the Morse index, CBMS Reg. Conf. ser. in Math. n° 38, Amer. Math. Soc.Providence R.I. (1978). Zbl0397.34056MR511133
- [34] C. Conley, E. Zehnder - Morse type index theory for flows and periodic solutions for hamiltonian equations, à paraître. Zbl0559.58019
- [35] C. Conley, E. Zehnder - The Birkhoff-Lewis fixed point theorem and a conjecture of V.I. Arnold, Version préliminaire.
- [36] N. Desolneux-Moulis - Orbites périodiques des systèmes hamiltoniens autonomes, Sém. Bourbaki février 1980, exposé n° 552, Lect. Notes in Math. n° 842, Springer-Verlag (1981). Zbl0479.58008MR636522
- [37] I. Ekeland - Periodic solutions of hamiltonian equations and a theorem of P. Rabinowitz, J. Diff. Equ.34(1979), 523-534. Zbl0446.70019MR555325
- [38] I. Ekeland - Oscillations de systèmes hamiltoniens non linéaires III, Bull. Soc. Math. France109(1981), 297-330. Zbl0514.70025MR680280
- [38B] I. Ekeland - Forced oscillations of nonlinear hamiltonian systems II, Advances Math.7A(1981), 345-360. Zbl0484.70023MR634246
- [39] I. Ekeland - A perturbation theory near convex hamiltonian systems, Cahiers CEREMADE n° 8226, Univ. Paris-Dauphine, à paraître. Zbl0476.34035
- [40] I. Ekeland - La théorie des perturbations au voisinage des systèmes hamiltoniens convexes, Sém. Goulaouic-Meyer-Schwartz décembre 1981, Exposé n° 7, Ec. Polytechnique, Palaiseau. Zbl0506.70017
- [41] I. Ekeland, J.M. Lasry - On the number of periodic trajectories for a hamiltonian flow on a convex energy surface, Ann. Math.112(1980), 283-319. Zbl0449.70014MR592293
- [42] I. Ekeland, J.M. Lasry - Problèmes variationnels non convexes en dualité, C.R.A.S.Paris, Série A291(1980), 493-496. Zbl0448.90063MR599991
- [43] I. Ekeland, R. Temam - Convex analysis and variational problems, North Holland, New York (1976). Zbl0322.90046MR463994
- [44] R.E. Fadell, P.H. Rabinowitz - Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for hamiltonian systems, Invent. Math.45(1978), 139-174. Zbl0403.57001MR478189
- [45] E.R. Fadell, S. Husseini, P.H. Rabinowitz - Borsuk-Ulam theorem for arbitrary S1-actions and applications, MRC Report2301, Madison Wis. USA.
- [45B] M. Girardi, M. Matzeu - Some results on solutions of minimal period to superquadratic hamiltonian systems, Preprint. MR698360
- [46] W.B. Gordon - A theorem on the existence of periodic solutions to hamiltonian systems with convex potentials, J. Diff. Equ.10(1971), 324-335. Zbl0231.35006MR292113
- [47] H. Hofer - A simple proof for a result of I. Ekeland and J.M. Lasry concerning the number of periodic hamiltonian trajectories on a prescribed energy surface, Preprint.
- [47B] S.Y. Husseini - The equivariant J-homomorphism for arbitrary S1-action, Preprint.
- [48] L. Liusternik, L. Schnirelman - Méthodes topologiques dans les problèmes variationnals, Hermann, Paris (1934). Zbl0011.02803
- [49] A. Liapunov - Problème général de la stabilité des mouvements, Ann. Fac. Sci. Toulouse2(1907), 203-474.
- [50] J.L. Lions, E. Magenes - Problèmes aux limites non homogènes et applications, Dunod, Paris (1968). Zbl0165.10801
- [51] A. Marino, G. Prodi - Metodi perturbativi nella teoria di Morse, Boll. U.M.I.11(1975), 1-32. Zbl0311.58006MR418150
- [52] J. Mawin - Contractive mappings and periodically perturbed conservative systems, Arch. Math.12(1976), 67-74. Zbl0353.47034MR437858
- [53] J. Moser - Periodic orbits near an equilibrium and a theorem by A. Weinstein, Comm. Pure Appl. Math.29(1976), 727-747. Zbl0346.34024MR426052
- [54] W.M. Ni - Some minimax principles and their applications in nonlinear elliptic equations, J. Analyses Math.37(1980), 248-275. Zbl0462.58016MR583639
- [55] L. Nirenberg - Comments on nonlinear problems, Proceed. Conf. Catania (Italie), septembre 1981. MR736798
- [56] L. Nirenberg - Variational and topological methods in nonlinear problems, Bull. Amer. Math. Soc.4(1981), 267-302. Zbl0468.47040MR609039
- [57] H. Poincare - Les méthodes nouvelles de la mécanique céleste, Gauthier-Villars, Paris (1982). JFM25.1847.03
- [58] R. Palais - Critical point theory and the minimax principle, Proc. Symp. Pure Math. vol. 15, Amer. Math. Soc. Providence R.I. (1970), 185-212. Zbl0212.28902MR264712
- [59] P.H. Rabinowitz - Variational methods for nonlinear eigenvalue problems, (CIME, Varenna1974), Ediz. Cremonese, Rome (1974). MR464299
- [60] P.H. Rabinowitz - Free vibrations for a semi-linear wave equation, Comm. Pure Appl. Math.31(1978), 31-68. Zbl0341.35051MR470378
- [61] P.H. Rabinowitz - Periodic solutions of hamiltonian systems, Comm. Pure Appl. Math.31(1978), 157-184. Zbl0358.70014MR467823
- [62] P.H. Rabinowitz - A variational method for finding periodic solutions of differential equations, Nonlinear evolution equations (M.G. Crandall Ed.) Academic Press, New York (1978), 225-251. Zbl0486.35009MR513821
- [63] P.H. Rabinowitz - Periodic solutions of hamiltonian systems : A survey, MRC Techn. Report n° 2154, Univ. Wisconsin-Madison (1980).
- [64] P.H. Rabinowitz - Subharmonic solutions of hamiltonian systems, Comm. Pure Math.33(1980), 609-633. Zbl0425.34024MR586414
- [65] P.H. Rabinowitz - Periodic solutions of large norm of hamiltonian systems, Preprint. MR717867
- [66] P.H. Rabinowitz - Multiple critical points of perturbed symmetric functionals, Trans. Amer. Math. Soc.272(1982), 753-769. Zbl0589.35004MR662065
- [67] H. Seifert - Periodischer bewegungen mechanischer systeme, Math. Zeit.51(1948), 197-216. Zbl0030.22103MR25693
- [68] C.L. Siegel, J. Moser - Lectures on celestial mechanics, Springer-Verlag, New York (1971) ; Grundlehren Math. vol. 187. Zbl0312.70017MR502448
- [69] M. Schatzman - A class of nonlinear differential equations of second order in time, Nonlinear Analysis, T.M.A.2(1978), 355-373. Zbl0382.34003MR512664
- [70] A. Weinstein - Lagragian submanifolds and hamiltonian systems, Ann. Math.98 (1973), 377-410. Zbl0271.58008MR331428
- [71] A. Weinstein - Normal modes for nonlinear hamiltonian systems, Invent. Math.20 (1973), 47-57. Zbl0264.70020MR328222
- [72] A. Weinstein - Periodic orbits for convex hamiltonian systems, Ann. Math.108 (1987), 507-518. Zbl0403.58001MR512430
- [73] A. Weinstein - Bifurcations and Hamilton's principle, Math. Zeit.159(1978), 235-248. Zbl0366.58003MR501163
- [74] A. Weinstein - On the hypotheses of Rabinowitz' periodic orbit theorems, J. Diff. Equ.33(1979), 353-358. Zbl0388.58020MR543704
- [75] M. Willem - Subharmonic oscillations of convex hamiltonian systems, Preprint. MR813660
- [76] M. Willem - Subharmonic oscillations of nonlinear systems, Proceed. Conf. "Equa. diff. 82", Würzburg, à paraître. Zbl0527.58017
Citations in EuDML Documents
top- J. Mawhin, M. Willem, Critical points of convex perturbations of some indefinite quadratic forms and semi-linear boundary value problems at resonance
- J. M. Lasry, Solutions périodiques de systèmes hamiltoniens sur des surfaces d'énergie étoilées
- Elvira Mirenghi, Maria Tucci, Existence of -periodic solutions for a class of lagrangian systems
- V. Benci, Closed geodesics for the Jacobi metric and periodic solutions of prescribed energy of natural hamiltonian systems
- Marc Chaperon, Quelques questions de géométrie symplectique
- François Laudenbach, Orbites périodiques et courbes pseudo-holomorphes. Application à la conjecture de Weinstein en dimension 3
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.