Solutions périodiques de systèmes hamiltoniens

Henri Berestycki

Séminaire Bourbaki (1982-1983)

  • Volume: 25, page 105-128
  • ISSN: 0303-1179

How to cite

top

Berestycki, Henri. "Solutions périodiques de systèmes hamiltoniens." Séminaire Bourbaki 25 (1982-1983): 105-128. <http://eudml.org/doc/110002>.

@article{Berestycki1982-1983,
author = {Berestycki, Henri},
journal = {Séminaire Bourbaki},
keywords = {Palais-Smale condition; Arnold conjecture; dual action principle; convex Hamiltonians; periodic Hamiltonian},
language = {fre},
pages = {105-128},
publisher = {Société Mathématique de France},
title = {Solutions périodiques de systèmes hamiltoniens},
url = {http://eudml.org/doc/110002},
volume = {25},
year = {1982-1983},
}

TY - JOUR
AU - Berestycki, Henri
TI - Solutions périodiques de systèmes hamiltoniens
JO - Séminaire Bourbaki
PY - 1982-1983
PB - Société Mathématique de France
VL - 25
SP - 105
EP - 128
LA - fre
KW - Palais-Smale condition; Arnold conjecture; dual action principle; convex Hamiltonians; periodic Hamiltonian
UR - http://eudml.org/doc/110002
ER -

References

top
  1. [1] R. Abraham, J.E. Marsden - Foundations of Mechanics, 2nd edition, Benjamin, New York (1967). Zbl0158.42901
  2. [2] H. Amann, E. Zehnder - Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations, Annali Scuola Norm. Sup. Pisa Serie IV, 7(1980), 539-603. Zbl0452.47077MR600524
  3. [3] H. Amann, E. Zehnder - Periodic solutions of asymptotically linear hamiltonian systems, Manuscripta Math.32(1980), 149-189. Zbl0443.70019MR592715
  4. [4] A. Ambrosetti, G. Mancini - On a theorem by Ekeland and Lasry concerning the number of periodic hamiltonian trajectories, J. Diff. Equ.43(1981), 1-6. Zbl0492.70018
  5. [5] A. Ambrosetti, G. Mancini - Solutions of minimal period for a class of convex hamiltonian systems, Preprint. MR615860
  6. [6] A. Ambrosetti, P.H. Rabinowitz - Dual variational methods in critical point theory and applications, J. Funct. Anal.14(1973), 349-381. Zbl0273.49063MR370183
  7. [7] V.I. Arnold - Méthodes mathématiques de la mécanique classique, Editions Mir, Moscou (1976). Zbl0385.70001MR474391
  8. [8] V.I. Arnold, A. Avez - Problèmes ergodiques de la mécanique classique, Gauthier-Villars, Paris (1967). Zbl0149.21704MR209436
  9. [9] J.-P. Aubin - Variational principles for differential equations of elliptic, parabolic and hyperbolic type, Cahiers CEREMADE n° 7912, Univ. Paris-Dauphine. Zbl0481.49008
  10. [10] J.-P. Aubin, I. Ekeland - Second order evolution equations associated with convex hamiltonians, Bull. Canad. Math. (1979). Zbl0429.35042MR573562
  11. [11] J.F.G. Auchmuty, R. Beals - Variational solutions of some nonlinear free boundary problems, Arch. Ration. Mech. Anal.43(1971), 255-271. Zbl0225.49013MR337260
  12. [12] A. Bahri - Groupes d'homotopie des ensembles de niveaux pour certaines fonctionnelles à gradient Fredholm, à paraître. 
  13. [13] A. Bahri, H. Berestycki - Forced vibrations of superquadratic hamiltonian systems, Acta Math. (1983), sous presse. Zbl0592.70027MR741053
  14. [14] A. Bahri, H. Berestycki - Existence of forced oscillations for some nonlinear differential equations, Comm. Pure Applied Math. (1983), sous presse. Zbl0588.34028MR745324
  15. [15] V. Benci - Some critical point theorems and applications, Comm. Pure Applied Math.33(1980), 147-172. Zbl0472.58009MR562548
  16. [16] V. Benci - On critical point theory for indefinite functionals in the presence of symmetries, Trans. Amer. Math. Soc.274(1982), 533-572. Zbl0504.58014MR675067
  17. [17] V. Benci - A geometrical index for the group S1 and some applications to the research of periodic solutions of O.D.E. 's, Comm. Pure Appl. Math.34(1981), 393-432. Zbl0447.34040MR615624
  18. [18] V. Benci, P.H. Rabinowitz - Critical point theorems for indefinite functionals, Invent. Math.52(1979), 241-273. Zbl0465.49006MR537061
  19. [19] H. Berestycki - Orbites périodiques de systèmes conservatifs, Sém. Goulaouic-Meyer-Schwartz, Exposé n° XXIV, 1981-82, Ec. Polytechnique, Palaiseau. Zbl0513.70020MR671621
  20. [20] H. Berestycki, H. Brezis - On a free boundary problem arising in plasma physics, Nonlinear Analysis, T.M.A.4(1980), 415-436. Zbl0437.35032MR574364
  21. [21] H. Berestycki, J.M. Lasry - A topological method for the existence of periodic orbits to conservative systems, Preprint. 
  22. [22] H. Berestycki, J.M. Lasry, G. Mancini, B. Ruf - Existence of multiple periodic orbits on star-shaped hamiltonian surfaces, Preprint. Zbl0542.58029MR784474
  23. [23] M.S. Berger - Nonlinearity and functional analysis, Academic Press, New York (1987). Zbl0368.47001MR488101
  24. [24] M.S. Berger - On a family of periodic solutions for hamiltonian systems, J. Diff. Equ.10(1971), 324-335. Zbl0237.34067MR292113
  25. [25] H. Brezis - Periodic solutions of nonlinear vibrating strings and duality principle, Bull. A.M.S., à paraître. Zbl0515.35060
  26. [26] H. Brezis, J.M. Coron - Periodic solutions of nonlinear wave equations and hamiltonian systems, Amer. J. of Math.103(1980), 559-570. Zbl0462.35004MR618324
  27. [27] H. Brezis, J.M. Coron, L. Nirenberg - Free vibrations for a nonlinear wave equation and a theorem of P. Rabinowitz, Comm. Pure Appl. Math.33(1980), 667-684. Zbl0484.35057MR586417
  28. [28] H. Brezis, I. Ekeland - Un principe variationnel associé à certaines équations paraboliques, C.R.A.S.282(1976), 971-974 et 1197-1198. Zbl0334.35040
  29. [29] K.C. Chang - Solutions of asymptotically linear operator equations via Morse theory, Comm. Pure Appl. Math.34(1981), 639-712. Zbl0444.58008MR622618
  30. [30] F. Clarke - A classical variational principle for periodic hamiltonian trajectories, Proc. Amer. Math. Soc.76(1979), 186-188. Zbl0434.70022MR534415
  31. [31] F. Clarke - Periodic solutions to hamiltonian inclusions, J. Diff. Equ.40(1981), 1-6. Zbl0461.34030MR614215
  32. [32] F. Clarke, I. Ekeland - Hamiltonian trajectories having prescribed minimal period, Comm. Pure Appl. Math.33(1980), 103-116. Zbl0403.70016MR562546
  33. [33] C. Conley - Isolated invariant sets and the Morse index, CBMS Reg. Conf. ser. in Math. n° 38, Amer. Math. Soc.Providence R.I. (1978). Zbl0397.34056MR511133
  34. [34] C. Conley, E. Zehnder - Morse type index theory for flows and periodic solutions for hamiltonian equations, à paraître. Zbl0559.58019
  35. [35] C. Conley, E. Zehnder - The Birkhoff-Lewis fixed point theorem and a conjecture of V.I. Arnold, Version préliminaire. 
  36. [36] N. Desolneux-Moulis - Orbites périodiques des systèmes hamiltoniens autonomes, Sém. Bourbaki février 1980, exposé n° 552, Lect. Notes in Math. n° 842, Springer-Verlag (1981). Zbl0479.58008MR636522
  37. [37] I. Ekeland - Periodic solutions of hamiltonian equations and a theorem of P. Rabinowitz, J. Diff. Equ.34(1979), 523-534. Zbl0446.70019MR555325
  38. [38] I. Ekeland - Oscillations de systèmes hamiltoniens non linéaires III, Bull. Soc. Math. France109(1981), 297-330. Zbl0514.70025MR680280
  39. [38B] I. Ekeland - Forced oscillations of nonlinear hamiltonian systems II, Advances Math.7A(1981), 345-360. Zbl0484.70023MR634246
  40. [39] I. Ekeland - A perturbation theory near convex hamiltonian systems, Cahiers CEREMADE n° 8226, Univ. Paris-Dauphine, à paraître. Zbl0476.34035
  41. [40] I. Ekeland - La théorie des perturbations au voisinage des systèmes hamiltoniens convexes, Sém. Goulaouic-Meyer-Schwartz décembre 1981, Exposé n° 7, Ec. Polytechnique, Palaiseau. Zbl0506.70017
  42. [41] I. Ekeland, J.M. Lasry - On the number of periodic trajectories for a hamiltonian flow on a convex energy surface, Ann. Math.112(1980), 283-319. Zbl0449.70014MR592293
  43. [42] I. Ekeland, J.M. Lasry - Problèmes variationnels non convexes en dualité, C.R.A.S.Paris, Série A291(1980), 493-496. Zbl0448.90063MR599991
  44. [43] I. Ekeland, R. Temam - Convex analysis and variational problems, North Holland, New York (1976). Zbl0322.90046MR463994
  45. [44] R.E. Fadell, P.H. Rabinowitz - Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for hamiltonian systems, Invent. Math.45(1978), 139-174. Zbl0403.57001MR478189
  46. [45] E.R. Fadell, S. Husseini, P.H. Rabinowitz - Borsuk-Ulam theorem for arbitrary S1-actions and applications, MRC Report2301, Madison Wis. USA. 
  47. [45B] M. Girardi, M. Matzeu - Some results on solutions of minimal period to superquadratic hamiltonian systems, Preprint. MR698360
  48. [46] W.B. Gordon - A theorem on the existence of periodic solutions to hamiltonian systems with convex potentials, J. Diff. Equ.10(1971), 324-335. Zbl0231.35006MR292113
  49. [47] H. Hofer - A simple proof for a result of I. Ekeland and J.M. Lasry concerning the number of periodic hamiltonian trajectories on a prescribed energy surface, Preprint. 
  50. [47B] S.Y. Husseini - The equivariant J-homomorphism for arbitrary S1-action, Preprint. 
  51. [48] L. Liusternik, L. Schnirelman - Méthodes topologiques dans les problèmes variationnals, Hermann, Paris (1934). Zbl0011.02803
  52. [49] A. Liapunov - Problème général de la stabilité des mouvements, Ann. Fac. Sci. Toulouse2(1907), 203-474. 
  53. [50] J.L. Lions, E. Magenes - Problèmes aux limites non homogènes et applications, Dunod, Paris (1968). Zbl0165.10801
  54. [51] A. Marino, G. Prodi - Metodi perturbativi nella teoria di Morse, Boll. U.M.I.11(1975), 1-32. Zbl0311.58006MR418150
  55. [52] J. Mawin - Contractive mappings and periodically perturbed conservative systems, Arch. Math.12(1976), 67-74. Zbl0353.47034MR437858
  56. [53] J. Moser - Periodic orbits near an equilibrium and a theorem by A. Weinstein, Comm. Pure Appl. Math.29(1976), 727-747. Zbl0346.34024MR426052
  57. [54] W.M. Ni - Some minimax principles and their applications in nonlinear elliptic equations, J. Analyses Math.37(1980), 248-275. Zbl0462.58016MR583639
  58. [55] L. Nirenberg - Comments on nonlinear problems, Proceed. Conf. Catania (Italie), septembre 1981. MR736798
  59. [56] L. Nirenberg - Variational and topological methods in nonlinear problems, Bull. Amer. Math. Soc.4(1981), 267-302. Zbl0468.47040MR609039
  60. [57] H. Poincare - Les méthodes nouvelles de la mécanique céleste, Gauthier-Villars, Paris (1982). JFM25.1847.03
  61. [58] R. Palais - Critical point theory and the minimax principle, Proc. Symp. Pure Math. vol. 15, Amer. Math. Soc. Providence R.I. (1970), 185-212. Zbl0212.28902MR264712
  62. [59] P.H. Rabinowitz - Variational methods for nonlinear eigenvalue problems, (CIME, Varenna1974), Ediz. Cremonese, Rome (1974). MR464299
  63. [60] P.H. Rabinowitz - Free vibrations for a semi-linear wave equation, Comm. Pure Appl. Math.31(1978), 31-68. Zbl0341.35051MR470378
  64. [61] P.H. Rabinowitz - Periodic solutions of hamiltonian systems, Comm. Pure Appl. Math.31(1978), 157-184. Zbl0358.70014MR467823
  65. [62] P.H. Rabinowitz - A variational method for finding periodic solutions of differential equations, Nonlinear evolution equations (M.G. Crandall Ed.) Academic Press, New York (1978), 225-251. Zbl0486.35009MR513821
  66. [63] P.H. Rabinowitz - Periodic solutions of hamiltonian systems : A survey, MRC Techn. Report n° 2154, Univ. Wisconsin-Madison (1980). 
  67. [64] P.H. Rabinowitz - Subharmonic solutions of hamiltonian systems, Comm. Pure Math.33(1980), 609-633. Zbl0425.34024MR586414
  68. [65] P.H. Rabinowitz - Periodic solutions of large norm of hamiltonian systems, Preprint. MR717867
  69. [66] P.H. Rabinowitz - Multiple critical points of perturbed symmetric functionals, Trans. Amer. Math. Soc.272(1982), 753-769. Zbl0589.35004MR662065
  70. [67] H. Seifert - Periodischer bewegungen mechanischer systeme, Math. Zeit.51(1948), 197-216. Zbl0030.22103MR25693
  71. [68] C.L. Siegel, J. Moser - Lectures on celestial mechanics, Springer-Verlag, New York (1971) ; Grundlehren Math. vol. 187. Zbl0312.70017MR502448
  72. [69] M. Schatzman - A class of nonlinear differential equations of second order in time, Nonlinear Analysis, T.M.A.2(1978), 355-373. Zbl0382.34003MR512664
  73. [70] A. Weinstein - Lagragian submanifolds and hamiltonian systems, Ann. Math.98 (1973), 377-410. Zbl0271.58008MR331428
  74. [71] A. Weinstein - Normal modes for nonlinear hamiltonian systems, Invent. Math.20 (1973), 47-57. Zbl0264.70020MR328222
  75. [72] A. Weinstein - Periodic orbits for convex hamiltonian systems, Ann. Math.108 (1987), 507-518. Zbl0403.58001MR512430
  76. [73] A. Weinstein - Bifurcations and Hamilton's principle, Math. Zeit.159(1978), 235-248. Zbl0366.58003MR501163
  77. [74] A. Weinstein - On the hypotheses of Rabinowitz' periodic orbit theorems, J. Diff. Equ.33(1979), 353-358. Zbl0388.58020MR543704
  78. [75] M. Willem - Subharmonic oscillations of convex hamiltonian systems, Preprint. MR813660
  79. [76] M. Willem - Subharmonic oscillations of nonlinear systems, Proceed. Conf. "Equa. diff. 82", Würzburg, à paraître. Zbl0527.58017

Citations in EuDML Documents

top
  1. J. Mawhin, M. Willem, Critical points of convex perturbations of some indefinite quadratic forms and semi-linear boundary value problems at resonance
  2. J. M. Lasry, Solutions périodiques de systèmes hamiltoniens sur des surfaces d'énergie étoilées
  3. Elvira Mirenghi, Maria Tucci, Existence of T -periodic solutions for a class of lagrangian systems
  4. V. Benci, Closed geodesics for the Jacobi metric and periodic solutions of prescribed energy of natural hamiltonian systems
  5. Marc Chaperon, Quelques questions de géométrie symplectique
  6. François Laudenbach, Orbites périodiques et courbes pseudo-holomorphes. Application à la conjecture de Weinstein en dimension 3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.