Régularité et propriétés limites des fonctions aléatoires

Constantin Nanopoulos; Photis Nobelis

Séminaire de probabilités de Strasbourg (1978)

  • Volume: 12, page 567-690

How to cite

top

Nanopoulos, Constantin, and Nobelis, Photis. "Régularité et propriétés limites des fonctions aléatoires." Séminaire de probabilités de Strasbourg 12 (1978): 567-690. <http://eudml.org/doc/113181>.

@article{Nanopoulos1978,
author = {Nanopoulos, Constantin, Nobelis, Photis},
journal = {Séminaire de probabilités de Strasbourg},
language = {fre},
pages = {567-690},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Régularité et propriétés limites des fonctions aléatoires},
url = {http://eudml.org/doc/113181},
volume = {12},
year = {1978},
}

TY - JOUR
AU - Nanopoulos, Constantin
AU - Nobelis, Photis
TI - Régularité et propriétés limites des fonctions aléatoires
JO - Séminaire de probabilités de Strasbourg
PY - 1978
PB - Springer - Lecture Notes in Mathematics
VL - 12
SP - 567
EP - 690
LA - fre
UR - http://eudml.org/doc/113181
ER -

References

top
  1. [1] Bernard P.Quelques propriétés des trajectoires des fonctions aléatoires stables sur Rk. Ann. Inst. H. Poincaré Sec. B,6,2, (1970) pp. 131-151. Zbl0196.18601MR266291
  2. [2] Billingsley P.Convergence of probability measures. Wiley (1968). Zbl0172.21201MR233396
  3. [3] Boulicaut P.Fonctions de Young et fonctions aléatoires à trajectoires continues. C.R. Acad. Sci.Paris, Sér. A, 278 (1974), pp. 447-450. Zbl0296.60023MR346887
  4. [4] Dudley R.M.The sizes of compact subsets of Hilbert space and continuity of gaussian processes. J. Functional Anal., 1,3, (1967), pp. 290-330. Zbl0188.20502MR220340
  5. [5] Dudley R.M.Sample functions of the gaussian process. Ann. of Probability, 1, (1973), pp. 66-103. Zbl0261.60033MR346884
  6. [6] Dudley R.M.Metric entropy and the central limit theorem in C(S) . Ann. Inst. Fourier, 24, 2, (1974), pp. 48-60. Zbl0275.60033MR415727
  7. [7] Dudley R.M.et Strassen V.The central limit theorem and the ∈-entropie. Lect. Notes Math., 89, (1969), pp. 224-231. Zbl0196.21101MR279872
  8. [8] Fernique X.Continuité des processus gaussiens. C.R. Acad. Sci.Paris, Sér. A-B, 258, (1964), pp. 6058-6060. Zbl0129.30101MR164365
  9. [9] Fernique X.Intégrabilité des vecteurs gaussiens. C.R. Acad. Sci.Paris, Sér. A, 270, (1970), pp. 1698-1699. Zbl0206.19002MR266263
  10. [10] Fernique X.Régularité de Processus gaussiens. Invent. Math., 12, (1971), pp. 303-320. Zbl0217.21104MR286166
  11. [11] Fernique X.Régularité des trajectoires des fonctions aléatoires gaussiennes. Ecole d'Eté de Probabilité de St Flour (1974). Lect. Notes Math., 480, (1975), pp. 1-96. Zbl0331.60025MR413238
  12. [12] Fernique X.Evaluation de processus gaussiens composés. Lect. Notes Math., 526, (1976), pp. 67-83. Zbl0383.60037MR443054
  13. [13] Garsia A. et Rodemich E.Monotonicity of certain functionals under rearrangement. Ann. Inst. Fourier, 24, 2, (1974), pp. 67-117. Zbl0274.26006MR414802
  14. [14] Garsia A., Rodemich E. et Rumsey H.A real variable lemma and the continuity of paths of gaussian processes. Indiana Univ. Math. J, 20, (1971), pp. 565-578. Zbl0252.60020MR267632
  15. [15] Giné E.On the central limit theorem for sample continuous processes. Ann. of Probability, 2, (1974), pp. 629-641. Zbl0288.60017MR877596
  16. [16] Hahn M.G.Conditions for sample-continuity and central limit theorem. (1976) à paraître dans Ann. of Probability. Zbl0388.60043MR440679
  17. [17] Heinkel B.Méthode des mesures majorantes et le théorème central limite dans C(S) . (1976) à paraître dans Z. Wahrscheinlichkeitstheorie Verw. Gebiete. Zbl0336.60021MR440667
  18. [18] Hoffmann-Jørgensen J. et Pisier G.The strong law of large numbers and the central limit theorem in Banach spaces. Ann. of Probability, 4, (1976), pp. 587-599. Zbl0368.60022MR423451
  19. [19] Jain N.C.et Marcus M.B.Sufficient conditions for the continuity of stationary gaussian processes and applications to random series. Ann. Inst. Fourier, 24, 2, (1974), pp. 117-141. Zbl0283.60041MR413239
  20. [20] Jain N.C.et Marcus M.B.Central limit theorem for C(S)-valued random variables. J. of Functional Anal., 19, (1975), pp. 216-231. Zbl0305.60004MR385994
  21. [21] Krasnoselsky M.A.et Rutitsky Y.B.Convex fonctions and Orlicz spaces. Dehli Publ. Hindustan Corp. (1962). 
  22. [22] Loève M.Probability theory. Van Nostrand, 3ème ed., (1963). Zbl0108.14202MR203748
  23. [23] Neveu J.Martingales à temps discret. Dunod (1972). MR402914
  24. [24] Preston C.Banach spaces arising from some integral inequalities. Indiana Univ. Math. J., 20, (1971), pp. 997-1015. Zbl0228.46024MR282209
  25. [25] Preston C.Continuity properties of some gaussian processes. Ann. Math. Stat., 43, (1972), pp. 285-292. Zbl0268.60044MR307316
  26. [26] Zinn J.A note on the central limit theorem. (1976) à paraître. MR443026

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.