Schottky groups and counting

Jean-François Quint[1]

  • [1] Université Paris VII Denis Diderot, Institut de mathématique de Jussieu, case 7012, 2 place Jussieu, 75251 Paris cedex 05 (France)

Annales de l’institut Fourier (2005)

  • Volume: 55, Issue: 2, page 373-429
  • ISSN: 0373-0956

Abstract

top
Let X be a symmetric space of noncompact type and Γ a discrete group of isometries of X of Schottky type. In this paper, we give asymptotics of the orbitals counting functions associated to the action of Γ on X .

How to cite

top

Quint, Jean-François. "Groupes de Schottky et comptage." Annales de l’institut Fourier 55.2 (2005): 373-429. <http://eudml.org/doc/116195>.

@article{Quint2005,
abstract = {Soient $X$ un espace symétrique de type non compact et $\Gamma $ un groupe discret d’isométries de $X$ du type de Schottky. Dans cet article, nous donnons des équivalents des fonctions orbitales de comptage pour l’action de $\Gamma $ sur $X$.},
affiliation = {Université Paris VII Denis Diderot, Institut de mathématique de Jussieu, case 7012, 2 place Jussieu, 75251 Paris cedex 05 (France)},
author = {Quint, Jean-François},
journal = {Annales de l’institut Fourier},
keywords = {Lie groups; discrete subgroups; higher rank geometry; thermodynamical formalism},
language = {fre},
number = {2},
pages = {373-429},
publisher = {Association des Annales de l'Institut Fourier},
title = {Groupes de Schottky et comptage},
url = {http://eudml.org/doc/116195},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Quint, Jean-François
TI - Groupes de Schottky et comptage
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 2
SP - 373
EP - 429
AB - Soient $X$ un espace symétrique de type non compact et $\Gamma $ un groupe discret d’isométries de $X$ du type de Schottky. Dans cet article, nous donnons des équivalents des fonctions orbitales de comptage pour l’action de $\Gamma $ sur $X$.
LA - fre
KW - Lie groups; discrete subgroups; higher rank geometry; thermodynamical formalism
UR - http://eudml.org/doc/116195
ER -

References

top
  1. N. Anantharaman, Precise counting results for closed orbits of Anosov flows, Annales Scientifiques de l'École Normale Supérieure 33 (2000), 33-56 Zbl0992.37026MR1743718
  2. M. Babillot, F. Ledrappier, Lalley's theorem on periodic orbits of hyperbolic flows, Ergodic theory and dynamical systems, 18 (1998), 17-39 Zbl0915.58074MR1609507
  3. Y. Benoist, Propriétés asymptotiques des groupes linéaires, Geometric and functional analysis 7 (1997), 1-47 Zbl0947.22003MR1437472
  4. Y. Benoist, Propriétés asymptotiques des groupes linéaires (II), Advanced studies in pure mathematics 26 (2000), 33-48 Zbl0960.22012MR1770716
  5. J.-P. Conze, Y. Guivarc'h, Limit sets of groups of linear transformations, 62 (2000), 367-385 Zbl1115.37305
  6. D. Dolgopyat, Prevalence of rapid mixing in hyperbolic flows, Ergodic theory and dynamical systems 18 (1998), 1097-1114 Zbl0918.58058MR1653299
  7. A. Eskin, C. McMullen, Mixing, counting and equidistribution in Lie groups, Duke mathematical journal 71 (1993), 181-209 Zbl0798.11025MR1230290
  8. S. Helgason, Differential geometry, Lie groups and symmetric spaces, 80 (1978), Academic Press, San Diego Zbl0451.53038MR514561
  9. A. Katsuda, T. Sunada, Closed orbits in homology classes, Publications mathématiques de l'IHES 71 (1990), 5-32 Zbl0728.58026MR1079641
  10. S. P. Lalley, Renewal theorems in symbolic dynamics, with application to geodesic flows, noneuclidean tessellations and their fractal limits, Acta mathematica 163 (1989), 1-55 Zbl0701.58021MR1007619
  11. G. Prasad, -regular elements in Zariski dense subgroups, Oxford quaterly journal of mathematics 45 (1994), 541-545 Zbl0828.22010MR1315463
  12. W. Parry, M. Pollicott, Zeta functions and the periodic orbit structure for hyperbolic dynamics, (1990), 187-188, Société Mathématique de France, Paris Zbl0726.58003
  13. M. Pollicott, R. Sharp, Linear actions of free groups, Annales de l'institut Fourier 51 (2001), 131-150 Zbl0967.37016MR1821072
  14. M. Pollicott, R. Sharp, Asymptotic expansions for closed orbits in homology classes, GeometriæDedicata 87 (2001), 123-160 Zbl1049.37021MR1866845
  15. J.-F. Quint, Divergence exponentielle des sous-groupes discrets en rang supérieur, Commentarii Mathematicii Helvetici 77 (2002), 563-608 Zbl1010.22018MR1933790
  16. J.-F. Quint, Mesures de Patterson-Sullivan en rang supérieur, Geometric and functional analysis 12 (2002), 776-809 Zbl1169.22300MR1935549
  17. J.-F. Quint, L'indicateur de croissance des groupes de Schottky, Ergodic theory and dynamical systems 23 (2003), 249-272 Zbl1037.22024MR1971205
  18. Th. Roblin, Ergodicité et équidistribution en courbure négative, 95 (2003), Société Mathématique de France Zbl1056.37034
  19. C. Series, The infinite word problem and limit sets in Fuchsian groups, Ergodic theory and dynamical systems 1 (1981), 337-360 Zbl0483.30029MR662473
  20. J. Tits, Représentations linéaires irréductibles d'un groupe réductif sur un corps quelconque, Journal für die reine und angewandte Mathematik 247 (1971), 196-220 Zbl0227.20015MR277536

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.