Finite Dimensional Approximation of Nonlinear Problems. Part I. Branches of Nonsingular Solutions.
F. Brezzi; J. Rappaz; P.A. Raviart
Numerische Mathematik (1980/81)
- Volume: 36, page 1-26
- ISSN: 0029-599X; 0945-3245/e
Access Full Article
topHow to cite
topBrezzi, F., Rappaz, J., and Raviart, P.A.. "Finite Dimensional Approximation of Nonlinear Problems. Part I. Branches of Nonsingular Solutions.." Numerische Mathematik 36 (1980/81): 1-26. <http://eudml.org/doc/132686>.
@article{Brezzi1980/81,
author = {Brezzi, F., Rappaz, J., Raviart, P.A.},
journal = {Numerische Mathematik},
keywords = {mixed finite-element methods; Banach space; implicit function theorem; continuation methods; convergence in a parameter; von Kármán equations},
pages = {1-26},
title = {Finite Dimensional Approximation of Nonlinear Problems. Part I. Branches of Nonsingular Solutions.},
url = {http://eudml.org/doc/132686},
volume = {36},
year = {1980/81},
}
TY - JOUR
AU - Brezzi, F.
AU - Rappaz, J.
AU - Raviart, P.A.
TI - Finite Dimensional Approximation of Nonlinear Problems. Part I. Branches of Nonsingular Solutions.
JO - Numerische Mathematik
PY - 1980/81
VL - 36
SP - 1
EP - 26
KW - mixed finite-element methods; Banach space; implicit function theorem; continuation methods; convergence in a parameter; von Kármán equations
UR - http://eudml.org/doc/132686
ER -
Citations in EuDML Documents
top- Christine Bernardi, Brigitte Métivet, Bernadette Pernaud-Thomas, Couplage des équations de Navier-Stokes et de la chaleur : le modèle et son approximation par éléments finis
- Giovanni Prouse, A uniqueness theorem for the approximable solutions of the stationary Navier-Stokes equations
- Christine Bernardi, Frédéric Hecht, Rüdiger Verfürth, A finite element discretization of the three-dimensional Navier–Stokes equations with mixed boundary conditions
- Y. Maday, A. Quateroni, Approximation of Burgers' equation by pseudo-spectral methods
- Christoph Ortner, Endre Süli, Analysis of a quasicontinuum method in one dimension
- Mohamed Amara, Christine Bernardi, Convergence of a finite element discretization of the Navier-Stokes equations in vorticity and stream function formulation
- Andrea Manzoni, An efficient computational framework for reduced basis approximation and a posteriori error estimation of parametrized Navier–Stokes flows
- Vivette Girault, François Murat, Abner Salgado, Finite element discretization of Darcy's equations with pressure dependent porosity
- Jean Descloux, Jacques Rappaz, Approximation of solution branches of nonlinear equations
- M. D. Gunzburger, L. S. Hou, Th. P. Svobodny, Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with Dirichlet controls
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.