Mixed Finite Elements for Second Order Elliptic Problems in Three Variables.
F. Brezzi; J., Jr. Douglas; R. Durán
Numerische Mathematik (1987)
- Volume: 51, page 237-250
- ISSN: 0029-599X; 0945-3245/e
Access Full Article
topHow to cite
topCitations in EuDML Documents
top- Zhangxin Chen, Expanded mixed finite element methods for quasilinear second order elliptic problems, II
- Todd Arbogast, On the simulation of incompressible, miscible displacement in a naturally fractured petroleum reservoir
- Rolf Stenberg, Postprocessing schemes for some mixed finite elements
- Oscar Mario Lovera, Juan Enrique Santos, Numerical methods for a model for wave propagation in composite anisotropic media
- Martin Vohralík, Equivalence between lowest-order mixed finite element and multi-point finite volume methods on simplicial meshes
- Zhangxin Chen, Magne Espedal, Richard E. Ewing, Continuous-time finite element analysis of multiphase flow in groundwater hydrology
- Mary Fanett Wheeler, Guangri Xue, Ivan Yotov, A multiscale mortar multipoint flux mixed finite element method
- Yongxing Shen, Adrian J. Lew, A family of discontinuous Galerkin mixed methods for nearly and perfectly incompressible elasticity
- Mary Fanett Wheeler, Guangri Xue, Ivan Yotov, A multiscale mortar multipoint flux mixed finite element method
- Franco Brezzi, Jim Jr. Douglas, Michel Fortin, L. Donatella Marini, Efficient rectangular mixed finite elements in two and three space variables