Compact Kähler Manifolds of Positive Bisectional Curvature.
Inventiones mathematicae (1980)
- Volume: 59, page 189-204
- ISSN: 0020-9910; 1432-1297/e
Access Full Article
topHow to cite
topSiu, Yum-Tong, and Yau, Shing-Tung. "Compact Kähler Manifolds of Positive Bisectional Curvature.." Inventiones mathematicae 59 (1980): 189-204. <http://eudml.org/doc/142736>.
@article{Siu1980,
author = {Siu, Yum-Tong, Yau, Shing-Tung},
journal = {Inventiones mathematicae},
keywords = {compact Kähler manifold; bisectional curvature; algebraic manifold; algebraically closed field; differential geometric method; non-singular rational curve; harmonic mappings},
pages = {189-204},
title = {Compact Kähler Manifolds of Positive Bisectional Curvature.},
url = {http://eudml.org/doc/142736},
volume = {59},
year = {1980},
}
TY - JOUR
AU - Siu, Yum-Tong
AU - Yau, Shing-Tung
TI - Compact Kähler Manifolds of Positive Bisectional Curvature.
JO - Inventiones mathematicae
PY - 1980
VL - 59
SP - 189
EP - 204
KW - compact Kähler manifold; bisectional curvature; algebraic manifold; algebraically closed field; differential geometric method; non-singular rational curve; harmonic mappings
UR - http://eudml.org/doc/142736
ER -
Citations in EuDML Documents
top- A. Bahri, Critical points at infinity in the variational calculus
- Claudio Arezzo, Minimal surfaces and deformations of holomorphic curves in Kähler-Einstein manifolds
- Ahmad El Soufi, Indice de Morse des applications harmoniques de la sphère
- A. Polombo, De nouvelles formules de Weitzenböck pour des endomorphismes harmoniques. Applications géométriques
- D. Burns, P. De Bartolomeis, Applications harmoniques stables dans
- Haïm Brezis, Points critiques dans les problèmes variationnels sans compacité
- Viorel Vâjâitu, Pseudoconvex domains over -complete manifolds
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.