The Capelli identity, the double commutant theorem and multiplicity-free-actions.
Mathematische Annalen (1991)
- Volume: 290, Issue: 3, page 565-620
- ISSN: 0025-5831; 1432-1807/e
Access Full Article
topHow to cite
topHowe, Roger, and Umeda, Toru. "The Capelli identity, the double commutant theorem and multiplicity-free-actions.." Mathematische Annalen 290.3 (1991): 565-620. <http://eudml.org/doc/164834>.
@article{Howe1991,
author = {Howe, Roger, Umeda, Toru},
journal = {Mathematische Annalen},
keywords = {invariant differential operator; enveloping algebra; Capelli identity; Invariant Theory; multiplicity-free actions; algebraic groups; b- functions; orbits},
number = {3},
pages = {565-620},
title = {The Capelli identity, the double commutant theorem and multiplicity-free-actions.},
url = {http://eudml.org/doc/164834},
volume = {290},
year = {1991},
}
TY - JOUR
AU - Howe, Roger
AU - Umeda, Toru
TI - The Capelli identity, the double commutant theorem and multiplicity-free-actions.
JO - Mathematische Annalen
PY - 1991
VL - 290
IS - 3
SP - 565
EP - 620
KW - invariant differential operator; enveloping algebra; Capelli identity; Invariant Theory; multiplicity-free actions; algebraic groups; b- functions; orbits
UR - http://eudml.org/doc/164834
ER -
Citations in EuDML Documents
top- Tetsuya Sugitani, Harmonic analysis on quantum spheres associated with representations of and -jacobi polynomials
- Masatoshi Noumi, Tôru Umeda, Masato Wakayama, Dual pairs, spherical harmonics and a Capelli identity in quantum group theory
- J. Klimek, W. Kraśkiewicz, J. Weyman, The Grothendieck group of G-equivariant modules over coordinate rings of G-orbits
- Chal Benson, Joe Jenkins, Gail Ratcliff, Tefera Worku, Spectra for Gelfand pairs associated with the Heisenberg group
- Yannis Y. Papageorgiou, , the cubic and the quartic
- Nicole Bopp, Hubert Rubenthaler, Fonction zêta associée à la série principale sphérique de certains espaces symétriques
- Stavros Argyrios Papadakis, Bart Van Steirteghem, Equivariant degenerations of spherical modules for groups of type
- Dmitri Panyushev, On deformation method in invariant theory
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.