Note sur la convergence de méthodes de directions conjuguées

E. Polak; G. Ribiere

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1969)

  • Volume: 3, Issue: R1, page 35-43
  • ISSN: 0764-583X

How to cite

top

Polak, E., and Ribiere, G.. "Note sur la convergence de méthodes de directions conjuguées." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 3.R1 (1969): 35-43. <http://eudml.org/doc/193115>.

@article{Polak1969,
author = {Polak, E., Ribiere, G.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {numerical analysis},
language = {fre},
number = {R1},
pages = {35-43},
publisher = {Dunod},
title = {Note sur la convergence de méthodes de directions conjuguées},
url = {http://eudml.org/doc/193115},
volume = {3},
year = {1969},
}

TY - JOUR
AU - Polak, E.
AU - Ribiere, G.
TI - Note sur la convergence de méthodes de directions conjuguées
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1969
PB - Dunod
VL - 3
IS - R1
SP - 35
EP - 43
LA - fre
KW - numerical analysis
UR - http://eudml.org/doc/193115
ER -

References

top
  1. [1] R. FLETCHER et C. M. REEVES, « Function minimization by conjugate gradients», The Computer Journal, pp. 149-154 (1964). Zbl0132.11701MR187375
  2. [2] E. POLAK, « On Primal and Dual Methods for solving discrete optimal control Problems», Second Int. Conf. on Computing methods in optimization problems, San Remo, Italy, Sept. 1968. Zbl0208.17403MR280243
  3. [3] R. FLETCHER et M. J. D. POWELL, « rapidly convergent descent method for minimization», The Computer Journal, vol. 6, p. 163 (1963). Zbl0132.11603MR152116
  4. [4] D. M. TOPKIS et A. F. VEINOTT (Jr), « On the convergence of some feasible direction algorithms for non-linear programming», Siam. J. on Control, vol. 5, n° 2, p. 268 (1967). Zbl0158.18805MR213161
  5. [5] J. W. DANIEL, « The conjugate gradient method for linear and non linear operator equations», Siam J. Num. Anal, vol.4, n° 1(1967). Zbl0154.40302MR217987
  6. [6] M. R. HESTENES et E. STIEFEL, « Methods of conjugate gradients for solving linear systems», J. Res. N. B. S., vol. 49, p. (1952). Zbl0048.09901MR60307
  7. [7] T. GINSBURG, « The conjugate gradient method», Numerische Mathematik Band 5, Heft 2, p. 191 (1963). Zbl0123.11201MR154398

Citations in EuDML Documents

top
  1. Jonas Koko, A conjugate gradient method with quasi-Newton approximation
  2. Ladislav Lukšan, Variable metric method with limited storage for large-scale unconstrained minimization
  3. Morteza Kimiaei, Majid Rostami, Impulse noise removal based on new hybrid conjugate gradient approach
  4. J. C. Ligeron, R. Goarin, Modélisation multidimensionnelle des taux de défaillance de composants électroniques
  5. Fridrich Sloboda, An imperfect conjugate gradient algorithm
  6. Ladislav Lukšan, Computational experience with improved conjugate gradient methods for unconstrained minimization

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.