On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers

F. Brezzi

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1974)

  • Volume: 8, Issue: R2, page 129-151
  • ISSN: 0764-583X

How to cite

top

Brezzi, F.. "On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 8.R2 (1974): 129-151. <http://eudml.org/doc/193255>.

@article{Brezzi1974,
author = {Brezzi, F.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
language = {eng},
number = {R2},
pages = {129-151},
publisher = {Dunod},
title = {On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers},
url = {http://eudml.org/doc/193255},
volume = {8},
year = {1974},
}

TY - JOUR
AU - Brezzi, F.
TI - On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1974
PB - Dunod
VL - 8
IS - R2
SP - 129
EP - 151
LA - eng
UR - http://eudml.org/doc/193255
ER -

References

top
  1. [1] J. P. AUBIN, Approximation of elliptic boundary-value problems, Wiley-New York (1972), Zbl0248.65063MR478662
  2. [2] J. P. AUBIN, Cours d'optimisation, Université de Paris IX, Dauphine (1973-74). 
  3. [3] I. BABUSKA, Error boundfor the finite element method, Num. Math., 16,322-333, (1971). Zbl0214.42001MR288971
  4. [4] I. BABUSKA, The finite element method with Lagrangian multipliers, Num. Math.,20, 179-192 (1973). Zbl0258.65108MR359352
  5. [5] F. BREZZI, Sur la méthode des éléments finis hybrides pour le problème biharmonique (submitted to Num. Math). Zbl0316.65029
  6. [6] F. BREZZI, Sur une méthode hybride pour l'approximation du problème de la torsion d'une barre élastique (to appear on Ist. Lombardo Accad. Sci Lett. Rend. A). Zbl0351.73081MR378556
  7. [7] F. BREZZI, Sur l'existence, unicité, et approximation numérique de problèmes de point de selle, C. R. Acad. Sc. Paris, Série A, 278 (18 mars 1974), 839-842, (1974). Zbl0301.65031MR338867
  8. [8] F. BREZZI and L. D. MARINI, On the numerical solution ofplate bending problems by hybrid methods (to appear on Pubblicazioni del Laboratório di Analisi Numerical del C.N.R., Pavia). Zbl0322.73048
  9. [9] P. G. CIARLET and P. A. RAVIART, General Lagrange and Hermite interpolation in Rn with applications to finite element methods, Arch. Rat. Mech. Anal., 46.177-199 (1972). Zbl0243.41004MR336957
  10. [10] P. G. CIARLET and P. A. RAVIART, The combined effect of curved boundaries and numerical integration in isoparametric finite element methods. The Math. Found, of the F. E. M. (éd. by A. K. Aziz), Academic Press 1972. Zbl0262.65070MR421108
  11. [11] M. CROUZEIX and P. A. RAVIART, Conforming and Nonconforming Finite Element methods for Solving the Stationary Stokes Equations. I RAIRO, V-3, déc. 1973. Zbl0302.65087MR343661
  12. [12] B. FRAEUS DE VEUBEKE, Upper and lower bounds in matrix structural analysis, AGARDograph 72, Pergamon, 1964. 
  13. [13] B. FRAEUS DE VEUBEKE, Displacements and equilibrium models in the finite element method, Stress Analysis (éd. by O. C. Zienkiewicz and G. S. Holister), chap. p, Wiley, 1964. 
  14. [14] B. FRAEUS DE VEUBEKE, Bending and Stretching of plates, Proc. Conf. Matrix Method in Structural Mech., Air Force Technical Report AFF DL-TR-66-80, Nov. 1966. 
  15. [15] B. FRAEUS DE VEUBEKE, Variational principles and the patch-test (to appear on Int. J. for Numerical Meth. in Eng.). Zbl0284.73043
  16. [16] B. FRAEUS DE VEUBEKE and O. C. ZIENKIEWICZ, Strain energy bounds in finite element analysis by slab analogy, Journal of Strain Analysis 2, 4, 265-271 (1967). 
  17. [17] B. M. IRONS and A. RAZZAQUE, Experience with patch-test for convergence of finite elements, The Math. Found of the F. E. M. (ed. by A. K. Aziz). Academic Press, 1972. Zbl0279.65087MR423839
  18. [18] C. JOHNSON, On the convergence of a Mixed Finite Element Method for Plate Bending Problems, Num. Math., 21, 43-62 (1973). Zbl0264.65070MR388807
  19. [19] C. JOHNSON, Convergence of another mixed finite-element method for plate bending problems, Chalmers Institute of Technology No. 1972-27. Zbl0264.65070
  20. [20] F. KIKUCI and Y. ANDO, On the convergence of a mixed finite element scheme for plate bending, Nucl. Eng. and Design, 24, 357-373 (1973). 
  21. [21] LASCAUX and P. LESAINT (to appear). MR341902
  22. [22] J. L. LIONS and E. MAGENES, Non homogeneous boundary value problems and applications, vol. 1, 2, Grundlehren B. 181,182, Springer, 1971. Zbl0227.35001
  23. [23] B. MERCIER, Numerical solution of the biharmonic problem by mixed finite elements of class C° (to appear in Boll. U.M.I. (1974)). Zbl0332.65058MR378442
  24. [24] T.H.H. PIAN and P. TONG, variational principle and the convergence of a finite-element method based on assumed stresses distribution, Inst. J. Solid Structures, 5, 463-472 (1969). Zbl0167.52805
  25. [25] T.H. H. PIAN and P. TONG, Basis of finite element methods for solid continua, Int. J. for Numerical Meth. in Eng. 1, 3-28 (1969). Zbl0252.73052
  26. [26] P.A. RAVIART, Méthode des éléments finis, Cours 1972-73 à l'Université de ParisVI. 
  27. [27] P. A. RAVIART and J. M. THOMAS, (to appear). 
  28. [28] G. SANDER, Application of the dual analysis principle, Proceedings of IUTAM, Liège, Aug. 1970. 
  29. [29] G. SANDER, Application de la méthode des éléments finis à la flexion des plaques, Coll. Publ. Fac. Sc. Appl. Univ., Liège n. 15 (1969). 
  30. [30] G. STRANG, Variational crimes in the finite element methods, The Math. Found.of the F.E.M. (ed. by A. K. Aziz) Academic Press (1972). Zbl0264.65068MR413554
  31. [31] G. STRANG and G. Fix, An analysis of the finite éléments rnethod, Prentice Hall- New York, 1973. Zbl0356.65096MR443377
  32. [32] J. M. THOMAS, (to appear). 
  33. [33] K. YOSIDA, Functional Analysis, Grundlehren B. 123, Springer, 1965 . Zbl0435.46002
  34. [34] O. C. ZIENKIEWICZ, The finite element methods in engineering science McGraw-Hill (1971). Zbl0237.73071MR315970

Citations in EuDML Documents

top
  1. J.-M. Thomas, Méthode des éléments finis hybrides duaux pour les problèmes elliptiques du second ordre
  2. J. M. Thomas, Méthode des éléments finis équilibre
  3. A. Bermudez, J. M. Viaño, Une justification des équations de la thermoélasticité des poutres à section variable par des méthodes asymptotiques
  4. Jim Jr. Douglas, Richard E. Ewing, Mary Fanett Wheeler, The approximation of the pressure by a mixed method in the simulation of miscible displacement
  5. Vitoriano Ruas, Méthodes d'éléments finis quasilinéaires en déplacement pour l'étude de milieux incompressibles
  6. Alain Campbell, Impédance d'une plaque élastique reliée en trois points à un support rigide vibrant
  7. Ph. Destuynder, Comparaison entre les modèles tridimensionnels et bidimensionnels de plaques en élasticité
  8. Hervé Vandeven, Compatibilité des espaces discrets pour l'approximation spectrale du problème de Stokes périodique/non périodique
  9. Jie Shen, A spectral-Tau approximation for the Stokes and Navier-Stokes equations
  10. C. Canuto, Eigenvalue approximations by mixed methods

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.