Time discretization of parabolic problems by the discontinuous Galerkin method

Kenneth Eriksson; Claes Johnson; Vidar Thomée

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1985)

  • Volume: 19, Issue: 4, page 611-643
  • ISSN: 0764-583X

How to cite

top

Eriksson, Kenneth, Johnson, Claes, and Thomée, Vidar. "Time discretization of parabolic problems by the discontinuous Galerkin method." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 19.4 (1985): 611-643. <http://eudml.org/doc/193462>.

@article{Eriksson1985,
author = {Eriksson, Kenneth, Johnson, Claes, Thomée, Vidar},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {discontinuous Galerkin method; Hilbert space; Error estimates},
language = {eng},
number = {4},
pages = {611-643},
publisher = {Dunod},
title = {Time discretization of parabolic problems by the discontinuous Galerkin method},
url = {http://eudml.org/doc/193462},
volume = {19},
year = {1985},
}

TY - JOUR
AU - Eriksson, Kenneth
AU - Johnson, Claes
AU - Thomée, Vidar
TI - Time discretization of parabolic problems by the discontinuous Galerkin method
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1985
PB - Dunod
VL - 19
IS - 4
SP - 611
EP - 643
LA - eng
KW - discontinuous Galerkin method; Hilbert space; Error estimates
UR - http://eudml.org/doc/193462
ER -

References

top
  1. [1] G.A. BAKER, J. H. BRAMBLE and V. THOMÉE, Single step Galerkin approximations for parabolic problems. Math. comp. 31, 818-847 (1977). Zbl0378.65061MR448947
  2. [2] M. C. DELFOUR, W.W. HAGER and F. TROCHU, Discontinuous Galerkin methods for ordinary differential equations. Math. Comp. 36, 455-473 (1981). Zbl0469.65053MR606506
  3. [3] P. JAMET, Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain. SIAM J. Numer. Anal. 15, 912-928 (1978). Zbl0434.65091MR507554
  4. [4] C. JOHNSON, On error estimates for numerical methods for stiff o.d.e's. Preprint, Department of Mathematics, University of Michigan, 1984. 
  5. [5] M. LUSKIN and R. RANNACHER, On the smoothing property of the Galerkin method for parabolic equations SIAM J. Numer. Anal. 19, 93-113 (1981). Zbl0483.65064MR646596
  6. [6] V. THOMÉE, Galerkin Methods for Parabolic Problems, Springer Lecture Notes in Mathematics, No. 1054, 1984. Zbl0528.65052MR744045

Citations in EuDML Documents

top
  1. D. Estep, S. Larsson, The discontinuous Galerkin method for semilinear parabolic problems
  2. Guohui Zhou, A local L 2 -error analysis of the streamline diffusion method for nonstationary convection-diffusion systems
  3. Miloslav Feistauer, Jaroslav Hájek, Karel Švadlenka, Space-time discontinuos Galerkin method for solving nonstationary convection-diffusion-reaction problems
  4. Günter Lippold, Error estimates and step-size control for the approximate solution of a first order evolution equation
  5. Konstantinos Chrysafinos, Sotirios P. Filopoulos, Theodosios K. Papathanasiou, Error estimates for a FitzHugh–Nagumo parameter-dependent reaction-diffusion system
  6. Konstantinos Chrysafinos, Sotirios P. Filopoulos, Theodosios K. Papathanasiou, Error estimates for a FitzHugh–Nagumo parameter-dependent reaction-diffusion system
  7. Konstantinos Chrysafinos, Convergence of discontinuous Galerkin approximations of an optimal control problem associated to semilinear parabolic PDE's

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.