The Runge-Kutta local projection -discontinuous-Galerkin finite element method for scalar conservation laws
Bernardo Cockburn; Chi-Wang Shu
- Volume: 25, Issue: 3, page 337-361
- ISSN: 0764-583X
Access Full Article
topHow to cite
topCockburn, Bernardo, and Shu, Chi-Wang. "The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 25.3 (1991): 337-361. <http://eudml.org/doc/193630>.
@article{Cockburn1991,
author = {Cockburn, Bernardo, Shu, Chi-Wang},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {hyperbolic conservation laws; discontinuous Galerkin finite element; total variation diminishing Runge-Kutta time discretization; local projection; global stability; maximum principle; entropy solution; order of convergence},
language = {eng},
number = {3},
pages = {337-361},
publisher = {Dunod},
title = {The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws},
url = {http://eudml.org/doc/193630},
volume = {25},
year = {1991},
}
TY - JOUR
AU - Cockburn, Bernardo
AU - Shu, Chi-Wang
TI - The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1991
PB - Dunod
VL - 25
IS - 3
SP - 337
EP - 361
LA - eng
KW - hyperbolic conservation laws; discontinuous Galerkin finite element; total variation diminishing Runge-Kutta time discretization; local projection; global stability; maximum principle; entropy solution; order of convergence
UR - http://eudml.org/doc/193630
ER -
References
top- [1] Y. BRENIER and S. OSHER, Approximate Riemman Solvers, and Numerical Flux Functions ICASE-NASA Langley Center report n° 84-63, Hampton, VA, 1984. Zbl0597.65071
- [2] G. CHAVENT and B. COCKBURN, Consistance et Stabilité des Schémas LRG pour les Lois de Conservation Scalaires, INRIA report # 370 (1987).
- [3] G. CHAVENT and B. COCKBURN, The Local Projection Discontinuons Galerkin Finite Element Method for Scalar Conservation Laws, M2AN, 23 (1989), pp. 565-592. Zbl0715.65079MR1025072
- [4] G. CHAVENT and G. SALZANO, A Finite Element Method for the 1D Water Flooding Problem with Gravity, J. Comput. Phys., 45 (1982) pp. 307-344. Zbl0489.76106MR666166
- [5] P. G. CIARLET, The Finite Element Method for Elliptic Problems, North Holland, 1975. Zbl0383.65058MR520174
- [6] T. GEVECI, The Significance of the Stability of Difference Schemes in Different lp-spaces, SIAM Review, 24 (1982),pp. 413-426. Zbl0495.65043MR678560
- [7] B. A. FRYXEL, P. R. WOODWARD, P. COLLELA and K. H. WINKLER, An Implicit-Explicit Hybrid Method for Lagrangian Hydrodynamics, J. Comput Phys., 63 (1986), pp. 283-310. Zbl0596.76078MR835820
- [8] P. D. LAX and B. WENDROFF, Systems of Conservation Laws, Comm. Pure and Appl. Math., 13 (1960), pp. 217-237. Zbl0152.44802MR120774
- [9] S. OSHER, Riemman Solvers, the Entropy Condition, and Difference Approximations, SIAM J. Numer. Anal., 21 (1984), pp. 217-235. Zbl0592.65069MR736327
- [10] B. VAN LEER, Towards the Ultimate Conservative Scheme, VI. A NewApproach to Numerical Convection J. Comput.Phys., 23 (1977), pp. 276-299. Zbl0339.76056
- [11] C. W. SHU, TVB uniformly high-order schemes for conservation laws, Math.Comp., 49 (1987), pp. 105-121. Zbl0628.65075MR890256
- [12] C. W. SHU and S. OSHER, Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes, J. Comput. Phys., 77 (1988), pp. 439-471. Zbl0653.65072MR954915
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.