The Runge-Kutta local projection P 1 -discontinuous-Galerkin finite element method for scalar conservation laws

Bernardo Cockburn; Chi-Wang Shu

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1991)

  • Volume: 25, Issue: 3, page 337-361
  • ISSN: 0764-583X

How to cite

top

Cockburn, Bernardo, and Shu, Chi-Wang. "The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 25.3 (1991): 337-361. <http://eudml.org/doc/193630>.

@article{Cockburn1991,
author = {Cockburn, Bernardo, Shu, Chi-Wang},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {hyperbolic conservation laws; discontinuous Galerkin finite element; total variation diminishing Runge-Kutta time discretization; local projection; global stability; maximum principle; entropy solution; order of convergence},
language = {eng},
number = {3},
pages = {337-361},
publisher = {Dunod},
title = {The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws},
url = {http://eudml.org/doc/193630},
volume = {25},
year = {1991},
}

TY - JOUR
AU - Cockburn, Bernardo
AU - Shu, Chi-Wang
TI - The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1991
PB - Dunod
VL - 25
IS - 3
SP - 337
EP - 361
LA - eng
KW - hyperbolic conservation laws; discontinuous Galerkin finite element; total variation diminishing Runge-Kutta time discretization; local projection; global stability; maximum principle; entropy solution; order of convergence
UR - http://eudml.org/doc/193630
ER -

References

top
  1. [1] Y. BRENIER and S. OSHER, Approximate Riemman Solvers, and Numerical Flux Functions ICASE-NASA Langley Center report n° 84-63, Hampton, VA, 1984. Zbl0597.65071
  2. [2] G. CHAVENT and B. COCKBURN, Consistance et Stabilité des Schémas LRG pour les Lois de Conservation Scalaires, INRIA report # 370 (1987). 
  3. [3] G. CHAVENT and B. COCKBURN, The Local Projection Discontinuons Galerkin Finite Element Method for Scalar Conservation Laws, M2AN, 23 (1989), pp. 565-592. Zbl0715.65079MR1025072
  4. [4] G. CHAVENT and G. SALZANO, A Finite Element Method for the 1D Water Flooding Problem with Gravity, J. Comput. Phys., 45 (1982) pp. 307-344. Zbl0489.76106MR666166
  5. [5] P. G. CIARLET, The Finite Element Method for Elliptic Problems, North Holland, 1975. Zbl0383.65058MR520174
  6. [6] T. GEVECI, The Significance of the Stability of Difference Schemes in Different lp-spaces, SIAM Review, 24 (1982),pp. 413-426. Zbl0495.65043MR678560
  7. [7] B. A. FRYXEL, P. R. WOODWARD, P. COLLELA and K. H. WINKLER, An Implicit-Explicit Hybrid Method for Lagrangian Hydrodynamics, J. Comput Phys., 63 (1986), pp. 283-310. Zbl0596.76078MR835820
  8. [8] P. D. LAX and B. WENDROFF, Systems of Conservation Laws, Comm. Pure and Appl. Math., 13 (1960), pp. 217-237. Zbl0152.44802MR120774
  9. [9] S. OSHER, Riemman Solvers, the Entropy Condition, and Difference Approximations, SIAM J. Numer. Anal., 21 (1984), pp. 217-235. Zbl0592.65069MR736327
  10. [10] B. VAN LEER, Towards the Ultimate Conservative Scheme, VI. A NewApproach to Numerical Convection J. Comput.Phys., 23 (1977), pp. 276-299. Zbl0339.76056
  11. [11] C. W. SHU, TVB uniformly high-order schemes for conservation laws, Math.Comp., 49 (1987), pp. 105-121. Zbl0628.65075MR890256
  12. [12] C. W. SHU and S. OSHER, Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes, J. Comput. Phys., 77 (1988), pp. 439-471. Zbl0653.65072MR954915

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.