Convergence of a streamline diffusion finite element method for scalar conservation laws with boundary conditions
- Volume: 25, Issue: 6, page 749-782
- ISSN: 0764-583X
Access Full Article
topHow to cite
topSzepessy, A.. "Convergence of a streamline diffusion finite element method for scalar conservation laws with boundary conditions." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 25.6 (1991): 749-782. <http://eudml.org/doc/193647>.
@article{Szepessy1991,
author = {Szepessy, A.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {convergence; shock-capturing streamline diffusion finite element method; conservation laws; Numerical experiments},
language = {eng},
number = {6},
pages = {749-782},
publisher = {Dunod},
title = {Convergence of a streamline diffusion finite element method for scalar conservation laws with boundary conditions},
url = {http://eudml.org/doc/193647},
volume = {25},
year = {1991},
}
TY - JOUR
AU - Szepessy, A.
TI - Convergence of a streamline diffusion finite element method for scalar conservation laws with boundary conditions
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1991
PB - Dunod
VL - 25
IS - 6
SP - 749
EP - 782
LA - eng
KW - convergence; shock-capturing streamline diffusion finite element method; conservation laws; Numerical experiments
UR - http://eudml.org/doc/193647
ER -
References
top- [BLN] C. BARDOS, A. Y. LE ROUX, J. C. NEDELEC, First order quasilinear equations with boundary conditions, Comm. P.D.E. 4 (9), pp. 1017-1034, 1979. Zbl0418.35024MR542510
- [Di] R. J. DIPERNA, Measure-valued solutions of conservation laws, Arch. Rat. Mech. Anal. 8 (1985). Zbl0616.35055MR775191
- [Di2] R. J. DIPERNA, Convergence of approximate solutions to conservation laws, Arch. Rat. Mech. Anal. 82 (1983), 27-70. Zbl0519.35054MR684413
- [DL] F. DUBOIS et P. LE FLOCH, C. R. Acad., Sci. Paris 304, sériel (1987) 75-78. Zbl0634.35046MR878830
- [H] T. J. R. HUGHES and M. MALLET, A new finite element formulation for computational fluid dynamics : IV. a discontinuity - capturing operator for multidimensional advective - diffusive Systems, Comput. Methods Appl. Mech. Engrg. 58 (1986) 329-336. Zbl0587.76120MR865672
- [JNP] C. JOHNSON, U. NÄVERT and J. PITKÄRANTA, Finite element methods for linear hyperbolic problems, Comput. Methods Appl. Mech. Engrg. 45 (1984) 285-312. Zbl0526.76087MR759811
- [JS] C. JOHNSON and J. SARANEN, Streamline diffusion methods for problems in fluid mechanics, Math. Comp. v. 47 (1986) pp.1-18. Zbl0609.76020MR842120
- [JSz I] C. JOHNSON and A. SZEPESSY, On the convergence of a finite element method for a nonlinear hyperbolic conservation law, Math. Comp., vol.49, n° 180, oct. 1987, pp. 427-444. Zbl0634.65075MR906180
- [JSz II] C. JOHNSON, A. SZEPESSY and P. HANSBOOn the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws, Math. Comp. 54 (1990) 82-107. Zbl0685.65086MR995210
- [Lax] P. D. LAX, Shock waves and entropy, in Contributions to Nonlinear Functional Analysis, ed. E. A. Zarantonello, Academic Press (1971), 603-634. Zbl0268.35014MR393870
- [LR I] A. Y. LE ROUX, Étude du problème mixte pour une équation quasi linéaire du premier ordre, C. R. Acad. Sci. Paris, t. 285, Série A-351. Zbl0366.35019MR442449
- [LR II] A. Y. LE ROUX, Approximation de quelques problèmes hyperboliques non linéaires, Thèse d'État, Rennes, 1979.
- [Li] J. L. LIONS, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Paris, 1969. Zbl0189.40603MR259693
- [Sz I] A. SZEPESSY, Convergence of a shock-capturing streamline diffusion finite element method for scalar conservation laws in two space dimensions, Math. Comp., Oct. 1989, 527-545. Zbl0679.65072MR979941
- [Sz II] A. SZEPESSY, An existence result for scalar conservation laws using measure valued solutions, Comm. PDE, 14 (10), 1989, 1329-1350. Zbl0704.35022MR1022989
- [Sz III] A. SZEPESSY, Measure valued solutions of scalar conservation laws with boundary conditions, Arch. Rational Mech. Anal. 107, n°2, 1989, 181-193. Zbl0702.35155MR996910
- [Sz IV] A. SZEPESSY, Convergence of the Streamline Diffusion Finite Element Method for Conservation Laws, Thesis (1989), Dept. of Math., Chalmers Univ., S-41296 Göteborg.
- [Ta] L. TARTAR, The Compensated Compactness Method Applied to Systems of Conservation Laws, J. M. Bail (ed.), Systems of Nonlinear Partial Differential Equations, 263-285. NATO ASI series C, Reidel Publishing Col. (1983). Zbl0536.35003MR725524
Citations in EuDML Documents
top- J.-P. Vila, Convergence and error estimates in finite volume schemes for general multidimensional scalar conservation laws. I. Explicite monotone schemes
- Bruno Després, Frédéric Lagoutière, Generalized Harten formalism and longitudinal variation diminishing schemes for linear advection on arbitrary grids
- Bruno Després, Frédéric Lagoutière, Generalized Harten Formalism and Longitudinal Variation Diminishing schemes for Linear Advection on Arbitrary Grids
- Sébastien Martin, Julien Vovelle, Convergence of implicit Finite Volume methods for scalar conservation laws with discontinuous flux function
- Laurent Levi, Obstacle problems for scalar conservation laws
- Yuting Wei, Stabilized finite element methods for miscible displacement in porous media
- Laurent Levi, Obstacle problems for scalar conservation laws
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.