Fluids with anisotropic viscosity

Jean-Yves Chemin; Benoît Desjardins; Isabelle Gallagher; Emmanuel Grenier

ESAIM: Mathematical Modelling and Numerical Analysis (2010)

  • Volume: 34, Issue: 2, page 315-335
  • ISSN: 0764-583X

Abstract

top
Motivated by rotating fluids, we study incompressible fluids with anisotropic viscosity. We use anisotropic spaces that enable us to prove existence theorems for less regular initial data than usual. In the case of rotating fluids, in the whole space, we prove Strichartz-type anisotropic, dispersive estimates which allow us to prove global wellposedness for fast enough rotation.

How to cite

top

Chemin, Jean-Yves, et al. "Fluids with anisotropic viscosity." ESAIM: Mathematical Modelling and Numerical Analysis 34.2 (2010): 315-335. <http://eudml.org/doc/197442>.

@article{Chemin2010,
abstract = { Motivated by rotating fluids, we study incompressible fluids with anisotropic viscosity. We use anisotropic spaces that enable us to prove existence theorems for less regular initial data than usual. In the case of rotating fluids, in the whole space, we prove Strichartz-type anisotropic, dispersive estimates which allow us to prove global wellposedness for fast enough rotation. },
author = {Chemin, Jean-Yves, Desjardins, Benoît, Gallagher, Isabelle, Grenier, Emmanuel},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Navier-Stokes equations; Rotating fluids; Strichartz estimates.; Strichartz-type anisotropic dispersive estimates; rotating fluids; incompressible fluids; anisotropic viscosity; anisotropic spaces; existence theorem; global well-posedness},
language = {eng},
month = {3},
number = {2},
pages = {315-335},
publisher = {EDP Sciences},
title = {Fluids with anisotropic viscosity},
url = {http://eudml.org/doc/197442},
volume = {34},
year = {2010},
}

TY - JOUR
AU - Chemin, Jean-Yves
AU - Desjardins, Benoît
AU - Gallagher, Isabelle
AU - Grenier, Emmanuel
TI - Fluids with anisotropic viscosity
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 34
IS - 2
SP - 315
EP - 335
AB - Motivated by rotating fluids, we study incompressible fluids with anisotropic viscosity. We use anisotropic spaces that enable us to prove existence theorems for less regular initial data than usual. In the case of rotating fluids, in the whole space, we prove Strichartz-type anisotropic, dispersive estimates which allow us to prove global wellposedness for fast enough rotation.
LA - eng
KW - Navier-Stokes equations; Rotating fluids; Strichartz estimates.; Strichartz-type anisotropic dispersive estimates; rotating fluids; incompressible fluids; anisotropic viscosity; anisotropic spaces; existence theorem; global well-posedness
UR - http://eudml.org/doc/197442
ER -

References

top
  1. A. Babin, A. Mahalov and B. Nicolaenko, Global Splitting, Integrability and Regularity of 3D Euler and Navier-Stokes Equations for Uniformly Rotating Fluids. Eur. J. Mech.15 (1996) 291-300.  
  2. J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Annales de l'École Normale Supérieure14 (1981) 209-246.  
  3. J.-Y. Chemin, Fluides parfaits incompressibles. Astérisque230 (1995).  
  4. J.-Y. Chemin, À propos d'un problème de pénalisation de type antisymétrique. J. Math. Pures Appl.76 (1997) 739-755.  
  5. J.-Y. Chemin and N. Lerner, Flot de champs de vecteurs non Lipschitziens et équations de Navier-Stokes. J. Differential Equations121 (1992) 314-328.  
  6. J. -Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier, Anisotropy and dispersion in rotating fluids, preprint of Université d'Orsay (1999).  
  7. B. Desjardins and E. Grenier, On the homogeneous model of wind driven ocean circulation. SIAM J. Appl. Math. (to appear).  
  8. B. Desjardins and E. Grenier, Derivation of quasi-geostrophic potential vorticity equations. Adv. in Differential Equations3 (1998), No. 5, 715-752.  
  9. B. Desjardins and E. Grenier, Low Mach number limit of compressible flows in the whole space. Proceedings of the Royal Society of London A455 (1999) 2271-2279.  
  10. H. Fujita and T. Kato, On the Navier-Stokes initial value problem I. Archiv for Rational Mechanic Analysis16 (1964) 269-315.  
  11. I. Gallagher, The Tridimensional Navier-Stokes Equations with Almost Bidimensional Data: Stability, Uniqueness and Life Span. International Mathematics Research Notices18 (1997) 919-935.  
  12. H.P. Greenspan, The theory of rotating fluids. Cambridge monographs on mechanics and applied mathematics (1969).  
  13. E. Grenier and N. Masmoudi, Ekman layers of rotating fluids, the case of well prepared initial data. Comm. Partial Differential Equations22, No. 5-6, (1997) 953-975.  
  14. D. Iftimie, La résolution des équations de Navier-Stokes dans des domaines minces et la limite quasigéostrophique. Thèse de l'Université Paris 6 (1997).  
  15. D. Iftimie, The resolution of the Navier-Stokes equations in anisotropic spaces. Revista Matematica Ibero-Americana15 (1999) 1-36.  
  16. J. Leray, Essai sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math.63 (1933) 193-248.  
  17. J. Pedlosky, Geophysical fluid dynamics, Springer (1979).  
  18. J. Rauch and M. Reed, Nonlinear microlocal analysis of semilinear hyperbolic systems in one space dimension. Duke Mathematical Journal49 (1982) 397-475.  
  19. M. Sablé-Tougeron, Régularité microlocale pour des problèmes aux limites non linéaires. Annales de l'Institut Fourier36 (1986) 39-82.  

Citations in EuDML Documents

top
  1. Jean-Yves Chemin, Benoît Desjardins, Isabelle Gallagher, Emmanuel Grenier, Ekman boundary layers in rotating fluids
  2. Jean-Yves Chemin, Benoît Desjardins, Isabelle Gallagher, Emmanuel Grenier, Ekman boundary layers in rotating fluids
  3. Christophe Cheverry, Cascade of phases in turbulent flows
  4. Jamel Ben Ameur, Ridha Selmi, Study of Anisotropic MHD system in Anisotropic Sobolev spaces
  5. Christophe Cheverry, Sur la propagation de quasi-singularités
  6. Christophe Cheverry, Sur un problème de stabilité posé en optique géométrique non linéaire surcritique
  7. Marius Paicu, Fluides incompressibles horizontalement visqueux

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.