On the multiplicity function of ergodic group extensions of rotations
G. Goodson; J. Kwiatkowski; M. Lemańczyk; P. Liardet
Studia Mathematica (1992)
- Volume: 102, Issue: 2, page 157-174
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topGoodson, G., et al. "On the multiplicity function of ergodic group extensions of rotations." Studia Mathematica 102.2 (1992): 157-174. <http://eudml.org/doc/215920>.
@article{Goodson1992,
abstract = {For an arbitrary set A ⊆ ℕ satisfying 1 ∈ A and lcm(m₁,m₂) ∈ A whenever m₁,m₂ ∈ A, an ergodic abelian group extension of a rotation for which the range of the multiplicity function equals A is constructed.},
author = {Goodson, G., Kwiatkowski, J., Lemańczyk, M., Liardet, P.},
journal = {Studia Mathematica},
keywords = {multiplicity function; ergodic group extensions of rotations; spectral multiplicities; ergodic measure-preserving transformation; Abelian group extensions; adding machines; Morse automorphism},
language = {eng},
number = {2},
pages = {157-174},
title = {On the multiplicity function of ergodic group extensions of rotations},
url = {http://eudml.org/doc/215920},
volume = {102},
year = {1992},
}
TY - JOUR
AU - Goodson, G.
AU - Kwiatkowski, J.
AU - Lemańczyk, M.
AU - Liardet, P.
TI - On the multiplicity function of ergodic group extensions of rotations
JO - Studia Mathematica
PY - 1992
VL - 102
IS - 2
SP - 157
EP - 174
AB - For an arbitrary set A ⊆ ℕ satisfying 1 ∈ A and lcm(m₁,m₂) ∈ A whenever m₁,m₂ ∈ A, an ergodic abelian group extension of a rotation for which the range of the multiplicity function equals A is constructed.
LA - eng
KW - multiplicity function; ergodic group extensions of rotations; spectral multiplicities; ergodic measure-preserving transformation; Abelian group extensions; adding machines; Morse automorphism
UR - http://eudml.org/doc/215920
ER -
References
top- [1] O. N. Ageev, Dynamical systems with a Lebesgue component of even multiplicity in the spectrum, Mat. Sb. 136 (178) (1988), 307-319 (in Russian).
- [2] S. Ferenczi and J. Kwiatkowski, Rank and spectral multiplicity function, this volume, 201-224. Zbl0809.28013
- [3] G. R. Goodson, On the spectral multiplicity of a class of finite rank transformations, Proc. Amer. Math. Soc. 93 (1985), 303-306. Zbl0551.28019
- [4] G. R. Goodson and M. Lemańczyk, On the rank of a class of bijective substitutions, Studia Math. 96 (1990), 219-230. Zbl0711.28007
- [5] A. B. Katok, Constructions in Ergodic Theory, Progr. Math., Birkhäuser, Boston, Mass., to appear. Zbl1030.37001
- [6] M. Keane, Generalized Morse sequences, Z. Wahrsch. Verw. Gebiete 10 (1968), 335-353. Zbl0162.07201
- [7] J. Kwiatkowski, Spectral isomorphism of Morse dynamical systems, Bull. Acad. Polon. Sci. 29 (1981), 105-114. Zbl0496.28019
- [8] J. Kwiatkowski and A. Sikorski, Spectral properties of G-symbolic Morse shifts, Bull. Soc. Math. France 115 (1987), 19-33. Zbl0624.28014
- [9] M. Lemańczyk, Toeplitz Z₂-extensions, Ann. Inst. H. Poincaré Probab. Statist. 24 (1988), 1-43.
- [10] J. C. Martin, Generalized Morse sequences on n symbols, Proc. Amer. Math. Soc. 54 (1976), 379-383.
- [11] J. C. Martin, The structure of generalized Morse minimal sets on n symbols, Trans. Amer. Math. Soc. 232 (1977), 343-355. Zbl0375.28010
- [12] J. Mathew and M. G. Nadkarni, Measure preserving transformations whose spectra have a Lebesgue component of finite multiplicity, preprint. Zbl0515.28010
- [13] D. Newton, On canonical factors of ergodic dynamical systems, J. London Math. Soc. 19 (1979), 129-136. Zbl0425.28012
- [14] W. Parry, Compact abelian group extensions of discrete dynamical systems, Z. Wahrsch. Verw. Gebiete 13 (1969), 95-113. Zbl0184.26901
- [15] M. Queffélec, Contribution à l'étude spectrale de suites arithmétiques, Thèse, 1984.
- [16] E. A. Robinson, Ergodic measure preserving transformations with arbitrary finite spectral multiplicities, Invent. Math. 72 (1983), 299-314. Zbl0519.28008
- [17] E. A. Robinson, Transformations with highly nonhomogeneous spectrum of finite multiplicity, Israel J. Math. 56 (1986), 75-88. Zbl0614.28012
- [18] E. A. Robinson, Spectral multiplicity for non-abelian Morse sequences, in: Lecture Notes in Math. 1342, Springer, 1988, 645-652.
- [19] E. A. Robinson, Non-abelian extensions have nonsimple spectra, Compositio Math. 65 (1988), 155-170. Zbl0641.28011
Citations in EuDML Documents
top- I. Filipowicz, Product -actions on a Lebesgue space and their applications
- Krzysztof Frączek, Cyclic space isomorphism of unitary operators
- Mélanie Guenais, Spectres de M-extensions aléatoires
- Jakub Kwiatkowski, Mariusz Lemańczyk, On the multiplicity function of ergodic group extensions, II
- Sébastien Ferenczi, Jan Kwiatkowski, Rank and spectral multiplicity
- Jan Kwiatkowski, Inverse limit of M -cocycles and applications
- Jan Kwiatkowski, Yves Lacroix, Finite rank transformation and weak closure theorem
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.