On the multiplicity function of ergodic group extensions of rotations

G. Goodson; J. Kwiatkowski; M. Lemańczyk; P. Liardet

Studia Mathematica (1992)

  • Volume: 102, Issue: 2, page 157-174
  • ISSN: 0039-3223

Abstract

top
For an arbitrary set A ⊆ ℕ satisfying 1 ∈ A and lcm(m₁,m₂) ∈ A whenever m₁,m₂ ∈ A, an ergodic abelian group extension of a rotation for which the range of the multiplicity function equals A is constructed.

How to cite

top

Goodson, G., et al. "On the multiplicity function of ergodic group extensions of rotations." Studia Mathematica 102.2 (1992): 157-174. <http://eudml.org/doc/215920>.

@article{Goodson1992,
abstract = {For an arbitrary set A ⊆ ℕ satisfying 1 ∈ A and lcm(m₁,m₂) ∈ A whenever m₁,m₂ ∈ A, an ergodic abelian group extension of a rotation for which the range of the multiplicity function equals A is constructed.},
author = {Goodson, G., Kwiatkowski, J., Lemańczyk, M., Liardet, P.},
journal = {Studia Mathematica},
keywords = {multiplicity function; ergodic group extensions of rotations; spectral multiplicities; ergodic measure-preserving transformation; Abelian group extensions; adding machines; Morse automorphism},
language = {eng},
number = {2},
pages = {157-174},
title = {On the multiplicity function of ergodic group extensions of rotations},
url = {http://eudml.org/doc/215920},
volume = {102},
year = {1992},
}

TY - JOUR
AU - Goodson, G.
AU - Kwiatkowski, J.
AU - Lemańczyk, M.
AU - Liardet, P.
TI - On the multiplicity function of ergodic group extensions of rotations
JO - Studia Mathematica
PY - 1992
VL - 102
IS - 2
SP - 157
EP - 174
AB - For an arbitrary set A ⊆ ℕ satisfying 1 ∈ A and lcm(m₁,m₂) ∈ A whenever m₁,m₂ ∈ A, an ergodic abelian group extension of a rotation for which the range of the multiplicity function equals A is constructed.
LA - eng
KW - multiplicity function; ergodic group extensions of rotations; spectral multiplicities; ergodic measure-preserving transformation; Abelian group extensions; adding machines; Morse automorphism
UR - http://eudml.org/doc/215920
ER -

References

top
  1. [1] O. N. Ageev, Dynamical systems with a Lebesgue component of even multiplicity in the spectrum, Mat. Sb. 136 (178) (1988), 307-319 (in Russian). 
  2. [2] S. Ferenczi and J. Kwiatkowski, Rank and spectral multiplicity function, this volume, 201-224. Zbl0809.28013
  3. [3] G. R. Goodson, On the spectral multiplicity of a class of finite rank transformations, Proc. Amer. Math. Soc. 93 (1985), 303-306. Zbl0551.28019
  4. [4] G. R. Goodson and M. Lemańczyk, On the rank of a class of bijective substitutions, Studia Math. 96 (1990), 219-230. Zbl0711.28007
  5. [5] A. B. Katok, Constructions in Ergodic Theory, Progr. Math., Birkhäuser, Boston, Mass., to appear. Zbl1030.37001
  6. [6] M. Keane, Generalized Morse sequences, Z. Wahrsch. Verw. Gebiete 10 (1968), 335-353. Zbl0162.07201
  7. [7] J. Kwiatkowski, Spectral isomorphism of Morse dynamical systems, Bull. Acad. Polon. Sci. 29 (1981), 105-114. Zbl0496.28019
  8. [8] J. Kwiatkowski and A. Sikorski, Spectral properties of G-symbolic Morse shifts, Bull. Soc. Math. France 115 (1987), 19-33. Zbl0624.28014
  9. [9] M. Lemańczyk, Toeplitz Z₂-extensions, Ann. Inst. H. Poincaré Probab. Statist. 24 (1988), 1-43. 
  10. [10] J. C. Martin, Generalized Morse sequences on n symbols, Proc. Amer. Math. Soc. 54 (1976), 379-383. 
  11. [11] J. C. Martin, The structure of generalized Morse minimal sets on n symbols, Trans. Amer. Math. Soc. 232 (1977), 343-355. Zbl0375.28010
  12. [12] J. Mathew and M. G. Nadkarni, Measure preserving transformations whose spectra have a Lebesgue component of finite multiplicity, preprint. Zbl0515.28010
  13. [13] D. Newton, On canonical factors of ergodic dynamical systems, J. London Math. Soc. 19 (1979), 129-136. Zbl0425.28012
  14. [14] W. Parry, Compact abelian group extensions of discrete dynamical systems, Z. Wahrsch. Verw. Gebiete 13 (1969), 95-113. Zbl0184.26901
  15. [15] M. Queffélec, Contribution à l'étude spectrale de suites arithmétiques, Thèse, 1984. 
  16. [16] E. A. Robinson, Ergodic measure preserving transformations with arbitrary finite spectral multiplicities, Invent. Math. 72 (1983), 299-314. Zbl0519.28008
  17. [17] E. A. Robinson, Transformations with highly nonhomogeneous spectrum of finite multiplicity, Israel J. Math. 56 (1986), 75-88. Zbl0614.28012
  18. [18] E. A. Robinson, Spectral multiplicity for non-abelian Morse sequences, in: Lecture Notes in Math. 1342, Springer, 1988, 645-652. 
  19. [19] E. A. Robinson, Non-abelian extensions have nonsimple spectra, Compositio Math. 65 (1988), 155-170. Zbl0641.28011

Citations in EuDML Documents

top
  1. I. Filipowicz, Product d -actions on a Lebesgue space and their applications
  2. Krzysztof Frączek, Cyclic space isomorphism of unitary operators
  3. Mélanie Guenais, Spectres de M-extensions aléatoires
  4. Jakub Kwiatkowski, Mariusz Lemańczyk, On the multiplicity function of ergodic group extensions, II
  5. Sébastien Ferenczi, Jan Kwiatkowski, Rank and spectral multiplicity
  6. Jan Kwiatkowski, Inverse limit of M -cocycles and applications
  7. Jan Kwiatkowski, Yves Lacroix, Finite rank transformation and weak closure theorem

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.