-adic Differential Operators on Automorphic Forms on Unitary Groups
- [1] Mathematics Department Northwestern University 2033 Sheridan road Evanston, IL 60208 USA
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 1, page 177-243
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topEischen, Ellen E.. "$p$-adic Differential Operators on Automorphic Forms on Unitary Groups." Annales de l’institut Fourier 62.1 (2012): 177-243. <http://eudml.org/doc/251035>.
@article{Eischen2012,
abstract = {The goal of this paper is to study certain $p$-adic differential operators on automorphic forms on $U(n,n)$. These operators are a generalization to the higher-dimensional, vector-valued situation of the $p$-adic differential operators constructed for Hilbert modular forms by N. Katz. They are a generalization to the $p$-adic case of the $C^\{\infty \}$-differential operators first studied by H. Maass and later studied extensively by M. Harris and G. Shimura. The operators should be useful in the construction of certain $p$-adic $L$-functions attached to $p$-adic families of automorphic forms on the unitary groups $U(n)\times U(n)$.},
affiliation = {Mathematics Department Northwestern University 2033 Sheridan road Evanston, IL 60208 USA},
author = {Eischen, Ellen E.},
journal = {Annales de l’institut Fourier},
keywords = {$p$-adic automorphic forms; differential operators; Maass operators; -adic automorphic forms},
language = {eng},
number = {1},
pages = {177-243},
publisher = {Association des Annales de l’institut Fourier},
title = {$p$-adic Differential Operators on Automorphic Forms on Unitary Groups},
url = {http://eudml.org/doc/251035},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Eischen, Ellen E.
TI - $p$-adic Differential Operators on Automorphic Forms on Unitary Groups
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 1
SP - 177
EP - 243
AB - The goal of this paper is to study certain $p$-adic differential operators on automorphic forms on $U(n,n)$. These operators are a generalization to the higher-dimensional, vector-valued situation of the $p$-adic differential operators constructed for Hilbert modular forms by N. Katz. They are a generalization to the $p$-adic case of the $C^{\infty }$-differential operators first studied by H. Maass and later studied extensively by M. Harris and G. Shimura. The operators should be useful in the construction of certain $p$-adic $L$-functions attached to $p$-adic families of automorphic forms on the unitary groups $U(n)\times U(n)$.
LA - eng
KW - $p$-adic automorphic forms; differential operators; Maass operators; -adic automorphic forms
UR - http://eudml.org/doc/251035
ER -
References
top- Michel Courtieu, Alexei Panchishkin, Non-Archimedean -functions and arithmetical Siegel modular forms, 1471 (2004), Springer-Verlag, Berlin Zbl1070.11023MR2034949
- Ellen Eischen, -adic differential operators on vector-valued automorphic forms and applications, (2009) Zbl06387028
- Ellen E. Eischen, An Eisenstein Measure for Unitary Groups Zbl06387028
- Ellen E. Eischen, Michael Harris, Jian-Shu Li, Christopher M. Skinner, -adic -functions for Unitary Shimura Varieties, II
- Gerd Faltings, Ching-Li Chai, Degeneration of abelian varieties, 22 (1990), Springer-Verlag, Berlin Zbl0744.14031MR1083353
- Michael Harris, Special values of zeta functions attached to Siegel modular forms, Ann. Sci. École Norm. Sup. (4) 14 (1981), 77-120 Zbl0465.10022MR618732
- Michael Harris, Arithmetic vector bundles and automorphic forms on Shimura varieties. II, Compositio Math. 60 (1986), 323-378 Zbl0612.14019MR869106
- Michael Harris, Jian-Shu Li, Christopher M. Skinner, -adic -functions for unitary Shimura varieties. I. Construction of the Eisenstein measure, Doc. Math. (2006), 393-464 (electronic) Zbl1143.11019MR2290594
- Haruzo Hida, -adic automorphic forms on Shimura varieties, (2004), Springer-Verlag, New York Zbl1055.11032MR2055355
- Haruzo Hida, -adic automorphic forms on reductive groups, Astérisque (2005), 147-254 Zbl1122.11026MR2141703
- Nicholas Katz, Travaux de Dwork, Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 409 (1973), 167-200. Lecture Notes in Math., Vol. 317, Springer, Berlin Zbl0259.14007MR498577
- Nicholas M. Katz, Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin, Inst. Hautes Études Sci. Publ. Math. (1970), 175-232 Zbl0221.14007MR291177
- Nicholas M. Katz, -adic properties of modular schemes and modular forms, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) (1973), 69-190. Lecture Notes in Mathematics, Vol. 350, Springer, Berlin Zbl0271.10033MR447119
- Nicholas M. Katz, The Eisenstein measure and -adic interpolation, Amer. J. Math. 99 (1977), 238-311 Zbl0375.12022MR485797
- Nicholas M. Katz, -adic -functions for CM fields, Invent. Math. 49 (1978), 199-297 Zbl0417.12003MR513095
- Nicholas M. Katz, Tadao Oda, On the differentiation of de Rham cohomology classes with respect to parameters, J. Math. Kyoto Univ. 8 (1968), 199-213 Zbl0165.54802MR237510
- Kiran Kedlaya, -adic cohomology: from theory to practice, -adic Geometry: Lectures from the 2007 Arizona Winter School (2008), 175-200. University Lecture Series, Vol. 45, American Mathematical Society Zbl1153.14016MR2482348
- Robert E. Kottwitz, Points on some Shimura varieties over finite fields, J. Amer. Math. Soc. 5 (1992), 373-444 Zbl0796.14014MR1124982
- Kai-Wen Lan, Arithmetic compactifications of PEL-type Shimura varieties, (2008) Zbl1284.14004
- Hans Maass, Differentialgleichungen und automorphe Funktionen, Proceedings of the International Congress of Mathematicians, 1954, Amsterdam, vol. III (1956), 34-39, Erven P. Noordhoff N.V., Groningen Zbl0074.30402MR86901
- Hans Maass, Siegel’s modular forms and Dirichlet series, (1971), Springer-Verlag, Berlin Zbl0224.10028MR344198
- James Milne, Introduction to Shimura Varieties, (2004)
- David Mumford, An analytic construction of degenerating abelian varieties over complete rings, Compositio Math. 24 (1972), 239-272 Zbl0241.14020MR352106
- A. A. Panchishkin, Two variable -adic -functions attached to eigenfamilies of positive slope, Invent. Math. 154 (2003), 551-615 Zbl1065.11025MR2018785
- A. A. Panchishkin, The Maass-Shimura differential operators and congruences between arithmetical Siegel modular forms, Mosc. Math. J. 5 (2005), 883-918, 973–974 Zbl1129.11021MR2266464
- M. Rapoport, Compactifications de l’espace de modules de Hilbert-Blumenthal, Compositio Math. 36 (1978), 255-335 Zbl0386.14006MR515050
- Jean-Pierre Serre, Formes modulaires et fonctions zêta -adiques, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972) (1973), 191-268. Lecture Notes in Math., Vol. 350, Springer, Berlin Zbl0277.12014MR404145
- Goro Shimura, Arithmetic of differential operators on symmetric domains, Duke Math. J. 48 (1981), 813-843 Zbl0487.10021MR782579
- Goro Shimura, Differential operators and the singular values of Eisenstein series, Duke Math. J. 51 (1984), 261-329 Zbl0546.10025MR747868
- Goro Shimura, Invariant differential operators on Hermitian symmetric spaces, Ann. of Math. (2) 132 (1990), 237-272 Zbl0718.11020MR1070598
- Goro Shimura, Differential operators, holomorphic projection, and singular forms, Duke Math. J. 76 (1994), 141-173 Zbl0829.11029MR1301189
- Goro Shimura, Abelian varieties with complex multiplication and modular functions, 46 (1998), Princeton University Press, Princeton, NJ Zbl0908.11023MR1492449
- Goro Shimura, Arithmeticity in the theory of automorphic forms, 82 (2000), American Mathematical Society, Providence, RI Zbl0967.11001MR1780262
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.