Complete reducibility

Jean-Pierre Serre

Séminaire Bourbaki (2003-2004)

  • Volume: 46, page 195-218
  • ISSN: 0303-1179

Abstract

top
The notion of complete reducibility of a linear representation Γ 𝐆𝐋 n can be defined in terms of the action of Γ on the Tits building of 𝐆𝐋 n . An analogous definition can be given for any reductive group. We shall see how this translates in topological terms, and what applications can be obtained.

How to cite

top

Serre, Jean-Pierre. "Complète réductibilité." Séminaire Bourbaki 46 (2003-2004): 195-218. <http://eudml.org/doc/252137>.

@article{Serre2003-2004,
abstract = {La notion de complète réductibilité d’une représentation linéaire $\Gamma \rightarrow \mathbf \{GL\}_n$ peut se définir en termes de l’action de $\Gamma $ sur l’immeuble de Tits de $\mathbf \{GL\}_n$. Cela suggère une notion analogue pour tous les immeubles sphériques, et donc aussi pour tous les groupes réductifs. On verra comment cette notion se traduit en termes topologiques et quelles applications on peut en tirer.},
author = {Serre, Jean-Pierre},
journal = {Séminaire Bourbaki},
keywords = {reductive groups; spherical buildings; complete reducibility},
language = {fre},
pages = {195-218},
publisher = {Association des amis de Nicolas Bourbaki, Société mathématique de France},
title = {Complète réductibilité},
url = {http://eudml.org/doc/252137},
volume = {46},
year = {2003-2004},
}

TY - JOUR
AU - Serre, Jean-Pierre
TI - Complète réductibilité
JO - Séminaire Bourbaki
PY - 2003-2004
PB - Association des amis de Nicolas Bourbaki, Société mathématique de France
VL - 46
SP - 195
EP - 218
AB - La notion de complète réductibilité d’une représentation linéaire $\Gamma \rightarrow \mathbf {GL}_n$ peut se définir en termes de l’action de $\Gamma $ sur l’immeuble de Tits de $\mathbf {GL}_n$. Cela suggère une notion analogue pour tous les immeubles sphériques, et donc aussi pour tous les groupes réductifs. On verra comment cette notion se traduit en termes topologiques et quelles applications on peut en tirer.
LA - fre
KW - reductive groups; spherical buildings; complete reducibility
UR - http://eudml.org/doc/252137
ER -

References

top
  1. [AS86] M. Aschbacher. Chevalley groups of type G 2 as the group of a trilinear form. J. Algebra, 109 :193–259, 1986. Zbl0618.20030MR898346
  2. [BMR04] M. Bate, B.M.S. Martin, and G. Röhrle. A geometric approach to complete reducibility. preprint, Univ. Birmingham 2004 ; à paraître dans Invent. math. Zbl1092.20038MR2178661
  3. [BT65] A. Borel and J. Tits. Groupes réductifs. Publ. Math. Inst. Hautes Études Sci., 27 :55–150, 1965. Zbl0145.17402MR207712
  4. [BT71] A. Borel and J. Tits. Éléments unipotents et sous-groupes paraboliques de groupes réductifs I. Invent. math., 12 :95–104, 1971. Zbl0238.20055MR294349
  5. [Br89] K. Brown. Buildings. Springer-Verlag, 1989. Zbl0922.20034MR969123
  6. [Ch55] C. Chevalley. Théorie des Groupes de Lie, volume III. Hermann, Paris, 1955. Zbl0186.33104MR68552
  7. [DG70] M. Demazure and A. Grothendieck. Structure des schémas en groupes réductifs (SGA 3 III), volume 153 of Lect. Notes in Math. Springer-Verlag, 1970. Zbl0212.52810
  8. [Dy52] E.B. Dynkin. Sous-groupes maximaux des groupes classiques. Trudy Moskov. Mat. Obshch., 1 :39–116 (en russe), 1952. trad. anglaise : Selected Papers, American Mathematical Society, 2000, p. 37–170. 
  9. [Gu99] R.M. Guralnick. Small representations are completely reducible. J. Algebra, 220 :531–541, 1999. Zbl0941.20001MR1717357
  10. [IMP03] S. Ilangovan, V.B. Mehta, and A.J. Parameswaran. Semistability and semisimplicity in representations of low height in positive characteristic. In V. Lakshmibai et al., editors, A Tribute to C.S. Seshadri. Hindustani Book Ag., New Delhi, 2003. Zbl1067.20061MR2017588
  11. [JLPW95] C. Jansen, K. Lux, R. Parker, and R. Wilson. An atlas of Brauer characters. LMS Monographs. Clarendon Press, Oxford, 1995. Zbl0831.20001MR1367961
  12. [Ja97] J.C. Jantzen. Low dimensional representations of reductive groups are semisimple. In Algebraic Groups and Lie Groups, pages 255–266. Cambridge Univ. Press, Cambridge, 1997. Zbl0877.20029MR1635685
  13. [Ke78] G.R. Kempf. Instability in invariant theory. Ann. of Math., 108 :299–316, 1978. Zbl0406.14031MR506989
  14. [LS96] M.W. Liebeck and G.M. Seitz. Reductive Subgroups of Exceptional Algebraic Groups, volume 580 of Mem. Amer. Math. Soc. American Mathematical Society, 1996. Zbl0851.20045MR1329942
  15. [Ma03a] B.M.S. Martin. Reductive subgroups of reductive groups in nonzero characteristic. J. Algebra, 262 :265–286, 2003. Zbl1103.20045MR1971039
  16. [Ma03b] B.M.S. Martin. A normal subgroup of a strongly reductive subgroup is strongly reductive. J. Algebra, 265 :669–674, 2003. Zbl1032.20030MR1987023
  17. [Mc98] G.J. McNinch. Dimensional criteria for semisimplicity of representations. Proc. London Math. Soc. (3), 76 :95–149, 1998. Zbl0891.20032MR1476899
  18. [Mc00] G.J. McNinch. Semisimplicity of exterior powers of semisimple representations of groups. J. Algebra, 225 :646–666, 2000. Zbl0971.20005MR1741556
  19. [Mo56] G.D. Mostow. Fully reducible subgroups of algebraic groups. Amer. J. Math., 78 :200–221, 1956. Zbl0073.01603MR92928
  20. [Mu65] D. Mumford. Geometric Invariant Theory. Springer-Verlag. 1965 ; third enlarged edit. (D. Mumford, J. Fogarty, F. Kirwan), 1994. Zbl0797.14004MR214602
  21. [Mue97] B. Mühlherr. Complete reducibility in projective spaces and polar spaces. preprint, Dortmund, 1997. 
  22. [No87] M.V. Nori. On subgroups of 𝐆𝐋 ( n , 𝐅 p ) . Invent. math., 88 :257–275, 1987. Zbl0632.20030MR880952
  23. [Ri88] R.W. Richardson. Conjugacy classes of n -tuples in Lie algebras and algebraic groups. Duke Math. J., 57 :1–35, 1988. Zbl0685.20035MR952224
  24. [Ron89] M. Ronan. Lectures on Buildings. Acad. Press, San Diego, 1989. Zbl1190.51008MR1005533
  25. [Rou78] G. Rousseau. Immeubles sphériques et théorie des invariants. C. R. Acad. Sci. Paris Sér. I Math., 286 :247–250, 1978. Zbl0375.14013MR506257
  26. [Sei00] G.M. Seitz. Unipotent elements, tilting modules, and saturation. Invent. math., 141 :467–502, 2000. Zbl1053.20043MR1779618
  27. [Se94] J-P. Serre. Sur la semi-simplicité des produits tensoriels de représentations de groupes. Invent. math., 116 :513–530, 1994. volume dédié à Armand Borel. Zbl0816.20014MR1253203
  28. [Se97a] J-P. Serre. Semisimplicity and tensor products of group representations : converse theorems. J. Algebra, 194 :496–520, 1997. with an Appendix by Walter Feit. Zbl0896.20004MR1467165
  29. [Se97b] J-P. Serre. La notion de complète réductibilité dans les immeubles sphériques et les groupes réductifs. Séminaire au Collège de France, 1997, résumé dans [Ti97], p. 93–98. Zbl1156.20313
  30. [Se98] J-P. Serre. The notion of complete reducibility in group theory. In Moursund Lectures Part II (Eugene, 1998). Notes by W.E. Duckworth, http://darkwing.uoregon.edu/~math/serre/index.html. 
  31. [So69] L. Solomon. The Steinberg character of a finite group with BN-pair. In Theory of Finite Groups, pages 213–221. Benjamin, 1969. Zbl0216.08001MR246951
  32. [Te95] D.M. Testerman. A 1 -type overgroups of elements of order p in semisimple algebraic groups and the associated finite groups. J. Algebra, 177 :34–76, 1995. Zbl0857.20025MR1356359
  33. [Ti74] J. Tits. Buildings of spherical type and finite BN-pairs, volume 386 of Lect. Notes in Math. Springer-Verlag, 1974. Zbl0295.20047MR470099
  34. [Ti97] J. Tits. Résumé des cours de 1996-1997. In Annuaire du Collège de France, volume 97, pages 89–102. 1997. 
  35. [TW02] J. Tits and R.M. Weiss. Moufang Polygons. Springer-Verlag, 2002. Zbl1010.20017MR1938841

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.