Differentiability of the transition semigroup of the stochastic Burgers equation, and application to the corresponding Hamilton-Jacobi equation
Giuseppe Da Prato; Arnaud Debussche
- Volume: 9, Issue: 4, page 267-277
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topDa Prato, Giuseppe, and Debussche, Arnaud. "Differentiability of the transition semigroup of the stochastic Burgers equation, and application to the corresponding Hamilton-Jacobi equation." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 9.4 (1998): 267-277. <http://eudml.org/doc/252308>.
@article{DaPrato1998,
abstract = {We consider a stochastic Burgers equation. We show that the gradient of the corresponding transition semigroup \( P\_\{t\} \varphi \) does exist for any bounded \( \varphi \); and can be estimated by a suitable exponential weight. An application to some Hamilton-Jacobi equation arising in Stochastic Control is given.},
author = {Da Prato, Giuseppe, Debussche, Arnaud},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Stochastic control problem; Burgers equation; Hamilton-Jacobi equation; transition semigroup; Burger's equation; fixed point theorem; optimal control},
language = {eng},
month = {12},
number = {4},
pages = {267-277},
publisher = {Accademia Nazionale dei Lincei},
title = {Differentiability of the transition semigroup of the stochastic Burgers equation, and application to the corresponding Hamilton-Jacobi equation},
url = {http://eudml.org/doc/252308},
volume = {9},
year = {1998},
}
TY - JOUR
AU - Da Prato, Giuseppe
AU - Debussche, Arnaud
TI - Differentiability of the transition semigroup of the stochastic Burgers equation, and application to the corresponding Hamilton-Jacobi equation
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1998/12//
PB - Accademia Nazionale dei Lincei
VL - 9
IS - 4
SP - 267
EP - 277
AB - We consider a stochastic Burgers equation. We show that the gradient of the corresponding transition semigroup \( P_{t} \varphi \) does exist for any bounded \( \varphi \); and can be estimated by a suitable exponential weight. An application to some Hamilton-Jacobi equation arising in Stochastic Control is given.
LA - eng
KW - Stochastic control problem; Burgers equation; Hamilton-Jacobi equation; transition semigroup; Burger's equation; fixed point theorem; optimal control
UR - http://eudml.org/doc/252308
ER -
References
top- Bismut, J. M., Large deviations and the Malliavin Calculus. Birkhäuser, 1984. Zbl0537.35003MR755001
- Cannarsa, P. - Da Prato, G., Some results on nonlinear optimal control problems and Hamilton-Jacobi equations in infinite dimensions. J. Funct. Anal., 90, 1990, 27-47. Zbl0717.49022MR1047576DOI10.1016/0022-1236(90)90079-Z
- Cerrai, S., Optimal control problems for reaction-diffusion equations by a Dynamic Programming approach. Scuola Normale Superiore, Pisa1998, preprint.
- Da Prato, G. - Debussche, A., Control of the stochastic Burgers model of turbulence. Siam Journal on Control and Optimization, to appear. Zbl1111.49302MR1691934DOI10.1137/S0363012996311307
- Da Prato, G. - Debussche, A. - Temam, R., Stochastic Burgers equation. NoDEA, 1994, 389-402. Zbl0824.35112MR1300149DOI10.1007/BF01194987
- Da Prato, G. - Zabczyk, J., Ergodicity for Infinite Dimensional Systems. London Mathematical Society Lecture Notes, 229, 1996. Zbl0849.60052MR1417491DOI10.1017/CBO9780511662829
- Elworthy, K. D., Stochastic flows on Riemannian manifolds. In: M. A. Pinsky - V. Vihstutz (eds.), Diffusion processes and related problems in analysis. Birkhäuser, 1992, vol. II, 33-72. Zbl0758.58035MR1187985
- Fleming, W. H. - Rishel, R. W., Deterministic and Stochastic Optimal Control. Springer-Verlag, 1975. Zbl0323.49001MR454768
- Gozzi, F., Regularity of solutions of a second order Hamilton-Jacobi equation and application to a control problem. Commun. in partial differential equations, 20, 1995, 775-826. Zbl0842.49021MR1326907DOI10.1080/03605309508821115
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.