Girsanov’s transformation for SLE ( κ , ρ ) processes, intersection exponents and hiding exponents

Wendelin Werner

Annales de la Faculté des sciences de Toulouse : Mathématiques (2004)

  • Volume: 13, Issue: 1, page 121-147
  • ISSN: 0240-2963

How to cite

top

Werner, Wendelin. "Girsanov’s transformation for SLE$(\kappa ,\rho )$ processes, intersection exponents and hiding exponents." Annales de la Faculté des sciences de Toulouse : Mathématiques 13.1 (2004): 121-147. <http://eudml.org/doc/73617>.

@article{Werner2004,
author = {Werner, Wendelin},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Brownian motion; intersection exponent; stochastic Loewner evolution},
language = {eng},
number = {1},
pages = {121-147},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Girsanov’s transformation for SLE$(\kappa ,\rho )$ processes, intersection exponents and hiding exponents},
url = {http://eudml.org/doc/73617},
volume = {13},
year = {2004},
}

TY - JOUR
AU - Werner, Wendelin
TI - Girsanov’s transformation for SLE$(\kappa ,\rho )$ processes, intersection exponents and hiding exponents
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2004
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 13
IS - 1
SP - 121
EP - 147
LA - eng
KW - Brownian motion; intersection exponent; stochastic Loewner evolution
UR - http://eudml.org/doc/73617
ER -

References

top
  1. [1] Dubédat ( J. ), SLE and triangles, Elect. Comm. Probab.8, p. 28-42 (2003). Zbl1061.60104MR1961287
  2. [2] Dubédat ( J. ) , SLE(κ,ρ) martingales and duality , preprint (2003). 
  3. [3] Duplantier ( B.), Loop-erased random walks in two dimensions: exact critical exponents and winding numbers, Phys.A191, p. 516-522 (1992). 
  4. [4] Duplantier ( B.), Random walks and quantum gravity in two dimensions, Phys. Rev. Lett.81, p. 5489-5492 (1998). Zbl0949.83056MR1666816
  5. [5] Duplantier ( B. ), Conformally invariant fractals and potential theory, Phys. Rev. Lett.84, p. 1363-1367 (2000). Zbl1042.82577MR1740371
  6. [6] Duplantier ( B.), Conformal fractal geometry and boundary quantum gravity, preprint (2003). MR2112128
  7. [7] Duplantier ( B. ), Kwon ( K.-H.), Conformal invariance and intersection of random walks, Phys. Rev. Lett.61, p. 2514-2517 (1988). 
  8. [8] Duplantier ( B.), Saleur ( H.), Exact surface and wedge exponents for polymers in two dimensions, Phys. Rev. Lett.57, p. 3179-3182 (1986). MR869969
  9. [9] Fomin ( S.) , Loop-erased random walks and total positivity, Trans. Amer. Math. Soc.353, p. 3563-3583 (2001 ). Zbl0973.15014MR1837248
  10. [10] Friedrich ( R.), Werner ( W.), Conformal fields, restriction properties, degenerate representations and SLE, C.R. Acad. Sci. Paris335, p. 947-952 (2002). Zbl1101.81095MR1952555
  11. [11] Kenyon ( R. ), Long-range properties of spanning trees , J. Math. Phys.41, p. 1338-1363 (2000 ). Zbl0977.82011MR1757962
  12. [12] Knizhnik ( V.G.), Polyakov ( A.M.), Zamolodchikov ( A.B.), Fractal structure of 2-D quantum gravity, Mod. Phys. Lett.A3, p. 819 (1988). MR947880
  13. [13] Lawler ( G.F. ), Non-intersecting Brownian motions, Math. Phys. El. J.1, paper no.4 ( 1995). Zbl0846.60077
  14. [14] Lawler ( G.F. ) , An introduction to the stochastic Loewner evolution, to appear (2001). MR2087784
  15. [15] Lavvler ( G.F.), Schramm ( O.), Werner ( W.), Values of Brownian intersection exponents I: Half-plane exponents, Acta Mathematica187, p. 237-273 (2001). Zbl1005.60097MR1879850
  16. [16] Lawler ( G.F. ), Schramm ( O.), Werner ( W.), Values of Brownian intersection exponents II: Plane exponents, Acta Mathematica187, p. 275-308 (2001). Zbl0993.60083MR1879851
  17. [17] Lawler ( G.F. ), Schramm ( O.), Werner ( W.), Values of Brownian intersection exponents III: Two-sided exponents, Ann. Inst. Henri Poincaré38, p. 109-123 (2002). Zbl1006.60075MR1899232
  18. [18] Lawler ( G.F. ), Schramm ( O.), Werner ( W.), Analyticity of planar Brownian intersection exponents, Acta Mathematica189, p. 179-201 (2002). Zbl1024.60033MR1961197
  19. [19] Lawler ( G.F. ), Schramm ( O.), Werner ( W.), One-arm exponent for critical 2D percolation, Electronic J. Probab.7, paper no.2 (2002). Zbl1015.60091MR1887622
  20. [20] Lawler ( G.F. ) , Schramm ( O.), Werner ( W.), Sharp estimates for Brownian non-intersection probabilities, in In and out of equilibrium , V. Sidoravicius Ed., Prog. Probab51, Birkhäuser , p. 113-131 (2002). Zbl1011.60062MR1901950
  21. [21] Lawler ( G.F. ), Schramm ( O.), Werner ( W.), Conformal invariance of planar loop-erased random walks and uniform spanning trees, Ann. Probab., to appear (2001). Zbl1126.82011MR2044671
  22. [22] Lawler ( G.F. ), Schramm ( O.), Werner ( W.), On the scaling limit of planar self-avoiding walks, AMS Proc. Symp. Pure Math. Fractal Geometry and Applications, to appear (2002). Zbl1069.60089MR2112127
  23. [23] Lawler ( G.F. ), Schramm ( O.), Werner ( W.), Conformal restriction. The chordal case, J. Amer. Math. Soc.16, p. 917-955 (2003). Zbl1030.60096MR1992830
  24. [24] Lawler ( G.F. ) , Schramm ( O.), Werner ( W.), Conformal restriction . The radial case, in preparation (2003). 
  25. [25] Lawler ( G.F. ), Werner ( W.), Intersection exponents for planar Brownian motion, Ann. Prob.27, p. 1601-1642 (1999). Zbl0965.60071MR1742883
  26. [26] Lawler ( G.F. ), Werner ( W.), Universality for conformally invariant intersection exponents, J. Eur. Math. Soc.2, p. 291-328 (2000). Zbl1098.60081MR1796962
  27. [27] Lawler ( G.F. ) , Werner ( W.), The Brownian loop-soup, Probab. Th. Rel. Fields, to appear (2003). Zbl1049.60072MR2045953
  28. [28] Revuz ( D.) , Yor ( M. ), Continuous martingales and Brownian motion , Springer, (1991). Zbl0731.60002MR1083357
  29. [29] Rohde ( S.) , Schramm ( O.), Basic properties of SLE, Ann. Math., to appear (2001). Zbl1081.60069MR2153402
  30. [30] Schramm ( O.), Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math.118, p. 221-288 (2000). Zbl0968.60093MR1776084
  31. [31] Schramm ( O.), A percolation formula, Electr. Comm. Prob.6, p. 115-120 (2001). Zbl1008.60100MR1871700
  32. [32] Smirnov ( S.), Critical percolation in the plane: Conformal invariance, Cardy's formula, scaling limits, C. R. Acad. Sci. Paris Ser. I Math.333, p. 239-244 (2001). Zbl0985.60090MR1851632
  33. [33] Smirnov ( S.), Werner ( W.), Critical exponents for two-dimensional percolation, Math. Res. Lett.8, p. 729-744 (2001). Zbl1009.60087MR1879816
  34. [34] Virág ( B. ), Brownian beads, Probab. Th. Rel. Fields, to appear (2003). Zbl1035.60085MR2018921
  35. [35] Werner ( W.) , Random planar curves and Schramm-Loewner Evolutions, Lecture Notes of the 2002 St-Flour summer school, Springer , to appear (2002). Zbl1057.60078MR2079672
  36. [36] Wilson D.B. , Generating spanning trees more quickly than the cover time, Proc. 28th ACM Symp., p. 296-303 (1996). Zbl0946.60070MR1427525

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.