Girsanov’s transformation for SLE ( κ , ρ ) processes, intersection exponents and hiding exponents

Wendelin Werner

Annales de la Faculté des sciences de Toulouse : Mathématiques (2004)

  • Volume: 13, Issue: 1, page 121-147
  • ISSN: 0240-2963

How to cite

top

Werner, Wendelin. "Girsanov’s transformation for SLE$(\kappa ,\rho )$ processes, intersection exponents and hiding exponents." Annales de la Faculté des sciences de Toulouse : Mathématiques 13.1 (2004): 121-147. <http://eudml.org/doc/73617>.

@article{Werner2004,
author = {Werner, Wendelin},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Brownian motion; intersection exponent; stochastic Loewner evolution},
language = {eng},
number = {1},
pages = {121-147},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Girsanov’s transformation for SLE$(\kappa ,\rho )$ processes, intersection exponents and hiding exponents},
url = {http://eudml.org/doc/73617},
volume = {13},
year = {2004},
}

TY - JOUR
AU - Werner, Wendelin
TI - Girsanov’s transformation for SLE$(\kappa ,\rho )$ processes, intersection exponents and hiding exponents
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2004
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 13
IS - 1
SP - 121
EP - 147
LA - eng
KW - Brownian motion; intersection exponent; stochastic Loewner evolution
UR - http://eudml.org/doc/73617
ER -

References

top
  1. [1] Dubédat ( J. ), SLE and triangles, Elect. Comm. Probab.8, p. 28-42 (2003). Zbl1061.60104MR1961287
  2. [2] Dubédat ( J. ) , SLE(κ,ρ) martingales and duality , preprint (2003). 
  3. [3] Duplantier ( B.), Loop-erased random walks in two dimensions: exact critical exponents and winding numbers, Phys.A191, p. 516-522 (1992). 
  4. [4] Duplantier ( B.), Random walks and quantum gravity in two dimensions, Phys. Rev. Lett.81, p. 5489-5492 (1998). Zbl0949.83056MR1666816
  5. [5] Duplantier ( B. ), Conformally invariant fractals and potential theory, Phys. Rev. Lett.84, p. 1363-1367 (2000). Zbl1042.82577MR1740371
  6. [6] Duplantier ( B.), Conformal fractal geometry and boundary quantum gravity, preprint (2003). MR2112128
  7. [7] Duplantier ( B. ), Kwon ( K.-H.), Conformal invariance and intersection of random walks, Phys. Rev. Lett.61, p. 2514-2517 (1988). 
  8. [8] Duplantier ( B.), Saleur ( H.), Exact surface and wedge exponents for polymers in two dimensions, Phys. Rev. Lett.57, p. 3179-3182 (1986). MR869969
  9. [9] Fomin ( S.) , Loop-erased random walks and total positivity, Trans. Amer. Math. Soc.353, p. 3563-3583 (2001 ). Zbl0973.15014MR1837248
  10. [10] Friedrich ( R.), Werner ( W.), Conformal fields, restriction properties, degenerate representations and SLE, C.R. Acad. Sci. Paris335, p. 947-952 (2002). Zbl1101.81095MR1952555
  11. [11] Kenyon ( R. ), Long-range properties of spanning trees , J. Math. Phys.41, p. 1338-1363 (2000 ). Zbl0977.82011MR1757962
  12. [12] Knizhnik ( V.G.), Polyakov ( A.M.), Zamolodchikov ( A.B.), Fractal structure of 2-D quantum gravity, Mod. Phys. Lett.A3, p. 819 (1988). MR947880
  13. [13] Lawler ( G.F. ), Non-intersecting Brownian motions, Math. Phys. El. J.1, paper no.4 ( 1995). Zbl0846.60077
  14. [14] Lawler ( G.F. ) , An introduction to the stochastic Loewner evolution, to appear (2001). MR2087784
  15. [15] Lavvler ( G.F.), Schramm ( O.), Werner ( W.), Values of Brownian intersection exponents I: Half-plane exponents, Acta Mathematica187, p. 237-273 (2001). Zbl1005.60097MR1879850
  16. [16] Lawler ( G.F. ), Schramm ( O.), Werner ( W.), Values of Brownian intersection exponents II: Plane exponents, Acta Mathematica187, p. 275-308 (2001). Zbl0993.60083MR1879851
  17. [17] Lawler ( G.F. ), Schramm ( O.), Werner ( W.), Values of Brownian intersection exponents III: Two-sided exponents, Ann. Inst. Henri Poincaré38, p. 109-123 (2002). Zbl1006.60075MR1899232
  18. [18] Lawler ( G.F. ), Schramm ( O.), Werner ( W.), Analyticity of planar Brownian intersection exponents, Acta Mathematica189, p. 179-201 (2002). Zbl1024.60033MR1961197
  19. [19] Lawler ( G.F. ), Schramm ( O.), Werner ( W.), One-arm exponent for critical 2D percolation, Electronic J. Probab.7, paper no.2 (2002). Zbl1015.60091MR1887622
  20. [20] Lawler ( G.F. ) , Schramm ( O.), Werner ( W.), Sharp estimates for Brownian non-intersection probabilities, in In and out of equilibrium , V. Sidoravicius Ed., Prog. Probab51, Birkhäuser , p. 113-131 (2002). Zbl1011.60062MR1901950
  21. [21] Lawler ( G.F. ), Schramm ( O.), Werner ( W.), Conformal invariance of planar loop-erased random walks and uniform spanning trees, Ann. Probab., to appear (2001). Zbl1126.82011MR2044671
  22. [22] Lawler ( G.F. ), Schramm ( O.), Werner ( W.), On the scaling limit of planar self-avoiding walks, AMS Proc. Symp. Pure Math. Fractal Geometry and Applications, to appear (2002). Zbl1069.60089MR2112127
  23. [23] Lawler ( G.F. ), Schramm ( O.), Werner ( W.), Conformal restriction. The chordal case, J. Amer. Math. Soc.16, p. 917-955 (2003). Zbl1030.60096MR1992830
  24. [24] Lawler ( G.F. ) , Schramm ( O.), Werner ( W.), Conformal restriction . The radial case, in preparation (2003). 
  25. [25] Lawler ( G.F. ), Werner ( W.), Intersection exponents for planar Brownian motion, Ann. Prob.27, p. 1601-1642 (1999). Zbl0965.60071MR1742883
  26. [26] Lawler ( G.F. ), Werner ( W.), Universality for conformally invariant intersection exponents, J. Eur. Math. Soc.2, p. 291-328 (2000). Zbl1098.60081MR1796962
  27. [27] Lawler ( G.F. ) , Werner ( W.), The Brownian loop-soup, Probab. Th. Rel. Fields, to appear (2003). Zbl1049.60072MR2045953
  28. [28] Revuz ( D.) , Yor ( M. ), Continuous martingales and Brownian motion , Springer, (1991). Zbl0731.60002MR1083357
  29. [29] Rohde ( S.) , Schramm ( O.), Basic properties of SLE, Ann. Math., to appear (2001). Zbl1081.60069MR2153402
  30. [30] Schramm ( O.), Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math.118, p. 221-288 (2000). Zbl0968.60093MR1776084
  31. [31] Schramm ( O.), A percolation formula, Electr. Comm. Prob.6, p. 115-120 (2001). Zbl1008.60100MR1871700
  32. [32] Smirnov ( S.), Critical percolation in the plane: Conformal invariance, Cardy's formula, scaling limits, C. R. Acad. Sci. Paris Ser. I Math.333, p. 239-244 (2001). Zbl0985.60090MR1851632
  33. [33] Smirnov ( S.), Werner ( W.), Critical exponents for two-dimensional percolation, Math. Res. Lett.8, p. 729-744 (2001). Zbl1009.60087MR1879816
  34. [34] Virág ( B. ), Brownian beads, Probab. Th. Rel. Fields, to appear (2003). Zbl1035.60085MR2018921
  35. [35] Werner ( W.) , Random planar curves and Schramm-Loewner Evolutions, Lecture Notes of the 2002 St-Flour summer school, Springer , to appear (2002). Zbl1057.60078MR2079672
  36. [36] Wilson D.B. , Generating spanning trees more quickly than the cover time, Proc. 28th ACM Symp., p. 296-303 (1996). Zbl0946.60070MR1427525

NotesEmbed ?

top

You must be logged in to post comments.