Homologie nicht-additiver Funktoren. Anwendungen

Albrecht Dold; Dieter Puppe

Annales de l'institut Fourier (1961)

  • Volume: 11, page 201-312
  • ISSN: 0373-0956

How to cite

top

Dold, Albrecht, and Puppe, Dieter. "Homologie nicht-additiver Funktoren. Anwendungen." Annales de l'institut Fourier 11 (1961): 201-312. <http://eudml.org/doc/73776>.

@article{Dold1961,
author = {Dold, Albrecht, Puppe, Dieter},
journal = {Annales de l'institut Fourier},
keywords = {topology},
language = {ger},
pages = {201-312},
publisher = {Association des Annales de l'Institut Fourier},
title = {Homologie nicht-additiver Funktoren. Anwendungen},
url = {http://eudml.org/doc/73776},
volume = {11},
year = {1961},
}

TY - JOUR
AU - Dold, Albrecht
AU - Puppe, Dieter
TI - Homologie nicht-additiver Funktoren. Anwendungen
JO - Annales de l'institut Fourier
PY - 1961
PB - Association des Annales de l'Institut Fourier
VL - 11
SP - 201
EP - 312
LA - ger
KW - topology
UR - http://eudml.org/doc/73776
ER -

References

top
  1. [1] J. F. ADAMS, On the cobar construction, Proc. Nat. Acad. Sci., USA, 42 (1956), 409-412. Zbl0071.16404MR18,59c
  2. [2] W. D. BARCUS-J. P. MEYER, The suspension of a loop space, Amer. J. Math., 80 (1958), 895-920. Zbl0086.37504MR20 #5478
  3. [3] N. BOURBAKI, Séminaire, Exposé 170, de A. DOLD, Dezember, 1958, Paris. Zbl0125.01102
  4. [4] D. BUCHSBAUM, Exact categories and duality, Trans. Amer. Math. Soc., 80 (1955), 1-34. Zbl0065.25502MR17,579b
  5. [5] H. CARTAN, Algèbres d'Eilenberg-MacLane et homotopie, Séminaire, H. CARTAN, 7 (1954-1955), Paris. 
  6. [6] H. CARTAN, Quelques questions de topologie, Séminaire, H. CARTAN, 9 (1956-1957), Paris. 
  7. [7] H. CARTAN-S. EILENBERG, Homological Algebra, Princeton University Press, Princeton, N.J. 1956. Zbl0075.24305MR17,1040e
  8. [8] C. CHEVALLEY, Fundamental concepts of algebra, Academic Press Inc., New York, 1956. Zbl0074.01502MR18,553a
  9. [9] A. DOLD, Homology of symmetric products and other functors of complexes, Ann. of Math. 68 (1958), 54-80. Zbl0082.37701MR20 #3537
  10. [10] A. DOLD, Zur Homotopietheorie der Kettenkomplexe, Math. Annalen, 140 (1960), 278-298. Zbl0093.36903MR22 #3752
  11. [11] A. DOLD-D. PUPPE, Non-additive functors, their derived functors, and the suspension homomorphism, Proc. Nat. Acad. Sci., USA, 44 (1958), 1065-1068. Zbl0098.36004MR20 #3202
  12. [12] S. EILENBERG-S. MACLANE, On the groups H(π, n) I, Ann. of Math., 58 (1953), 55-106. Zbl0050.39304MR15,54b
  13. [13] S. EILENBERG-S. MACLANE, On the groups H(π, n) II, Ann. of Math., 60 (1954), 49-139. Zbl0055.41704MR16,391a
  14. [14] S. EILENBERG-J. A. ZILBER, On products of complexes, Amer. J. Math., 75 (1953), 200-204. Zbl0050.17301MR14,670c
  15. [15] R. GODEMENT, Topologie algébrique et théorie des faisceaux, Act. Sci. Ind., 1252, Hermann, Paris, 1958. Zbl0080.16201MR21 #1583
  16. [16] A. GROTHENDIECK, Sur quelques points d'algèbre homologique, Tôhoku Math. J., 9 (1957), 119-121. Zbl0118.26104MR21 #1328
  17. [17] D. M. KAN, Abstract Homotopy II, Proc. Nat. Acad. Sci. USA, 42 (1956), 255-258. Zbl0071.16702MR18,142e
  18. [18] D. M. KAN, Functors involving css-complexes, Trans. Amer. Math. Soc., 87 (1958), 330-346. Zbl0090.39001MR24 #A1720
  19. [19] D. M. KAN, On the homotopy relation for css-maps, Bol. Soc. Mat. Mexicana (1957), 75-81. Zbl0089.39102MR20 #2703
  20. [20] S. MACLANE, Simplicial topology I, Lecture notes by J. Yao, University of Chicago, 1959. 
  21. [21] J. MILNOR, The construction FK, Mimeographed notes, Princeton University, 1956. 
  22. [22] J. C. MOORE, Semi-simplicial complexes, Mimeographed notes, Princeton University, 1955-1956. 
  23. [23] M. NAKAOKA, Decomposition theorems for homology groups of symmetric groups, Ann. of Math., 71 (1960), 16-42. Zbl0090.39002MR22 #2989
  24. [24] D. PUPPE, Homotopie und Homologie in abelschen Gruppen- und Monoidkomplexen I, Math. Zeitschr., 68 (1958), 367-406. Zbl0078.15501MR20 #281
  25. [25] D. PUPPE, Homotopie und Homologie in abelschen Gruppen- und Monoidkomplexen II, Math. Zeitschr., 68 (1958), 407-421. Zbl0078.15501MR20 #281
  26. [26] J. P. SERRE, Homologie singulière des espaces fibrés. Applications, Ann. of Math., 54 (1951), 425-505. Zbl0045.26003MR13,574g
  27. [27] P. A. SMITH, Manifolds with abelian fundamental groups, Ann. of Math., 37 (1936), 526-533. Zbl0015.08403JFM62.0661.02
  28. [28] E. SPANIER, Infinite symmetric products, functions spaces, and duality, Ann. of Math., 69 (1959), 142-148. Zbl0086.37401MR21 #3851
  29. [29] N. E. STEENROD, The topology of fibre bundles, Princeton University Press, Princeton N.J. 1951. Zbl0054.07103MR12,522b
  30. [30] N. E. STEENROD, Cohomology operations derived from the symmetric group, Comment. Math. Helv., 31 (1957), 195-218. Zbl0077.16701MR19,1069i
  31. [31] G. W. WHITEHEAD, On the homology suspension, Ann. of Math., 62 (1955), 254-268. Zbl0067.41201MR17,520b
  32. [32] A. DOLD-R. THOM, Quasifaserungen und unendliche symmetrische Produkte, Ann. of Math., 67 (1958), 239-281. Zbl0091.37102MR20 #3542

Citations in EuDML Documents

top
  1. I. Moerdijk, J. A. Svensson, A Shapiro lemma for diagrams of spaces with applications to equivariant topology
  2. L. Breen, Biextensions alternées
  3. Takeshi Saito, Parity in Bloch’s conductor formula in even dimension
  4. Birgit Richter, Taylor towers for Γ -modules
  5. Lionel Schwartz, La conjecture de Sullivan
  6. Raymond Barre, De quelques aspects de la théorie des Q -variétés différentielles et analytiques
  7. Hông-Vân Lê, Universal spaces for manifolds equipped with an integral closed k -form
  8. Spencer Bloch, Algebraic K -theory and crystalline cohomology
  9. Teimuraz Pirashvili, Hodge decomposition for higher order Hochschild homology
  10. Joseph Tapia, K -théorie algébrique négative et K -théorie topologique de l’algèbre de Fréchet des opérateurs régularisants

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.