On holomorphically separable complex solv-manifolds

Alan T. Huckleberry; E. Oeljeklaus

Annales de l'institut Fourier (1986)

  • Volume: 36, Issue: 3, page 57-65
  • ISSN: 0373-0956

Abstract

top
Let G be a solvable complex Lie group and H a closed complex subgroup of G . If the global holomorphic functions of the complex manifold X : G / H locally separate points on X , then X is a Stein manifold. Moreover there is a subgroup H ^ of finite index in H with π 1 ( G / H ^ ) nilpotent. In special situations (e.g. if H is discrete) H normalizes H ^ and H / H ^ is abelian.

How to cite

top

Huckleberry, Alan T., and Oeljeklaus, E.. "On holomorphically separable complex solv-manifolds." Annales de l'institut Fourier 36.3 (1986): 57-65. <http://eudml.org/doc/74728>.

@article{Huckleberry1986,
abstract = {Let $G$ be a solvable complex Lie group and $H$ a closed complex subgroup of $G$. If the global holomorphic functions of the complex manifold $X:G/H$ locally separate points on $X$, then $X$ is a Stein manifold. Moreover there is a subgroup $\widehat\{H\}$ of finite index in $H$ with $\pi _1(G/\widehat\{H\})$ nilpotent. In special situations (e.g. if $H$ is discrete) $H$ normalizes $\widehat\{H\}$ and $H/\widehat\{H\}$ is abelian.},
author = {Huckleberry, Alan T., Oeljeklaus, E.},
journal = {Annales de l'institut Fourier},
keywords = {solv-manifolds; Steinness of homogeneous space; solvable complex Lie group},
language = {eng},
number = {3},
pages = {57-65},
publisher = {Association des Annales de l'Institut Fourier},
title = {On holomorphically separable complex solv-manifolds},
url = {http://eudml.org/doc/74728},
volume = {36},
year = {1986},
}

TY - JOUR
AU - Huckleberry, Alan T.
AU - Oeljeklaus, E.
TI - On holomorphically separable complex solv-manifolds
JO - Annales de l'institut Fourier
PY - 1986
PB - Association des Annales de l'Institut Fourier
VL - 36
IS - 3
SP - 57
EP - 65
AB - Let $G$ be a solvable complex Lie group and $H$ a closed complex subgroup of $G$. If the global holomorphic functions of the complex manifold $X:G/H$ locally separate points on $X$, then $X$ is a Stein manifold. Moreover there is a subgroup $\widehat{H}$ of finite index in $H$ with $\pi _1(G/\widehat{H})$ nilpotent. In special situations (e.g. if $H$ is discrete) $H$ normalizes $\widehat{H}$ and $H/\widehat{H}$ is abelian.
LA - eng
KW - solv-manifolds; Steinness of homogeneous space; solvable complex Lie group
UR - http://eudml.org/doc/74728
ER -

References

top
  1. [1] A. BOREL, Linear algebraic groups, Benjamin, New York, 1969. Zbl0186.33201MR40 #4273
  2. [2] G. COEURÉ, J. LOEB, A counterexample to the Serre problem with a bounded domain of C2 as fiber, Ann. of Math., 122 (1985), 329-334. Zbl0585.32030MR87c:32033
  3. [3] B. GILLIGAN, A.T. HUCKLEBERRY, On non-compact complex nilmanifolds, Math. Ann., 238 (1978), 39-49. Zbl0405.32009MR80a:32021
  4. [4] H. GRAUERT, Analytische Faserungen über holomorph-vollständigen Räumen, Math. Ann., 135 (1958), 263-273. Zbl0081.07401MR20 #4661
  5. [5] G. HOCHSCHILD, G.D. MOSTOW, On the algebra of representative functions of an analytic group, II, Am. J. Math., 86 (1964), 869-887. Zbl0152.01301MR34 #287
  6. [6] A.T. HUCKLEBERRY, E. OELJEKLAUS, Homogeneous spaces from a complex analytic viewpoint, Progress in Mathematics, Birkhäuser Vol. 14 (1981), 159-186. Zbl0527.32020MR84i:32045
  7. [7] J. LOEB, Actions d'une forme de Lie réelle d'un groupe de Lie complexe sur les fonctions plurisousharmoniques, Annales de l'Institut Fourier, 35-4 (1985), 59-97. Zbl0563.32013MR87c:32035
  8. [8] Y. MATSUSHIMA, Espaces homogènes de Stein des groupes de Lie complexes I, Nagoya Math. J., 16 (1960), 205-218. Zbl0094.28201MR22 #739
  9. [9] Y. MATSUSHIMA, A. MORIMOTO, Sur certains espaces fibrés holomorphes sur une variété de Stein, Bull. Soc. Math. France, 88 (1960), 137-155. Zbl0094.28104MR23 #A1061
  10. [10] G.D. MOSTOW, Factor spaces of solvable groups, Ann. of Math., 60 (1954), 1-27. Zbl0057.26103MR15,853g
  11. [11] D. SNOW, Stein quotients of connected complex Lie groups, Manuskripta Math., 50 (1985), 185-214. Zbl0582.32020MR86m:32050
  12. [12] K. STEIN, Überlagerungen holomorph-vollständiger komplexer Räume, Arch. Math., 7 (1956), 354-361. Zbl0072.08002MR18,933a
  13. [13] V. VARADARAJAN, Lie groups, Lie algebras, and their representations, Prentice Hall, Englewood Cliffs, 1974. Zbl0371.22001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.