On the validity of Huygens' principle for second order partial differential equations with four independent variables. Part I : derivation of necessary conditions

R. G. McLenaghan

Annales de l'I.H.P. Physique théorique (1974)

  • Volume: 20, Issue: 2, page 153-188
  • ISSN: 0246-0211

How to cite

top

McLenaghan, R. G.. "On the validity of Huygens' principle for second order partial differential equations with four independent variables. Part I : derivation of necessary conditions." Annales de l'I.H.P. Physique théorique 20.2 (1974): 153-188. <http://eudml.org/doc/75801>.

@article{McLenaghan1974,
author = {McLenaghan, R. G.},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {2},
pages = {153-188},
publisher = {Gauthier-Villars},
title = {On the validity of Huygens' principle for second order partial differential equations with four independent variables. Part I : derivation of necessary conditions},
url = {http://eudml.org/doc/75801},
volume = {20},
year = {1974},
}

TY - JOUR
AU - McLenaghan, R. G.
TI - On the validity of Huygens' principle for second order partial differential equations with four independent variables. Part I : derivation of necessary conditions
JO - Annales de l'I.H.P. Physique théorique
PY - 1974
PB - Gauthier-Villars
VL - 20
IS - 2
SP - 153
EP - 188
LA - eng
UR - http://eudml.org/doc/75801
ER -

References

top
  1. [1] L. Asgeirsson, Some hints on Huygens' principle and Hadamard's conjecture. Comm. Pure Appl. Math., t. 9, 1956, p. 307. Zbl0074.31101MR82034
  2. [2] Y. Bruhat, Théorème d'existence pour certains systèmes d'équations aux dérivées partielles non linéaires. Acta Math., t. 88, 1952, p. 141. Zbl0049.19201MR53338
  3. [3] M. Cahen and R. McLenaghan, Métriques des espaces lorentziens symétriques à quatre dimensions. C. R. Acad. Sci. Paris, t. 266, 1968, p. 1125. Zbl0172.27904MR231326
  4. [4] M. Chevalier, Sur le noyau de diffusion de l'opérateur laplacien. C. R. Acad. Sci. Paris, t. 264, 1967, p. 380. MR226555
  5. [5] E. Cotton, Sur les invariants différentiels de quelques équations linéaires aux dérivées partielles du second ordre. Ann. Sc. Ec. Norm. Supérieure, t. 17, 1900, p. 211. Zbl31.0379.02MR1508982JFM31.0379.02
  6. [6] R. Courant and D. Hilbert, Methods of mathematical physics, t. 2, Interscience, New York, 1962. Zbl0099.29504
  7. [7] A. Douglis, The problem of Cauchy for linear hyperbolic equations of second order. Comm. Pure Appl. Math., t. 7, 1954, p. 271. Zbl0059.08801MR62931
  8. [8] A. Douglis, A criterion for the validity of Huygens' principle. Comm. Pure Appl. Math., t. 9, 1956, p. 391. Zbl0075.09701MR82035
  9. [9] J.C. Du Plessis, Polynomial conformal tensors. Proc. Cambridge Philos. Soc., t. 68, 1970, p. 329. Zbl0203.54603MR259802
  10. [10] F.G. Friedlander, The wave equation in a curved space-time. Cambridge University Press (to appear). Zbl0316.53021MR460898
  11. [11] P. Günther, Zur Gültigkeit des Huygensschen Princips bei partiellen Differentialgleichungen von normalen hyperbolischen Typus. S.-B. Sachs. Akad. Wiss. Leipzig Math.-Natur. Kl., t. 100, 1952, p. 1. Zbl0046.32201MR50136
  12. [12] P. Günther, Uber einige spezielle Probleme aus der Theorie der linearen partiellen Differentialgleichungen zweiter Ordnung. S.-B. Sachs. Akad. Wiss. Leipzig Math.- Natur. Kl., t. 102, 1957, p. 1. Zbl0085.08202MR109937
  13. [13] P. Günther, Ein Beispiel einer nichttrivalen Huygensschen Differentialgleichungen mit vier unabhängigen Variablen. Arch. Rational Mech. Anal., t. 18, 1965, p. 103. Zbl0125.05404MR174865
  14. [14] J. Hadamard, Lectures on Cauchy's problem in linear partial differential equations. Yale University Press, New Haven, 1923. Zbl49.0725.04JFM49.0725.04
  15. [15] J. Hadamard, The problem of diffusion of waves. Ann. of Math., t. 43, 1942, p. 510. Zbl0063.01841MR6809
  16. [16] S. Helgason, Lie Groups and Symmetric Spaces. Article in Batelle Recontres1967, lectures in mathematics and physics. W. A. Benjamin, Inc., New York, 1968. Zbl0177.50601MR236325
  17. [17] G. Herglotz, Uber die Bestimmung eines Linienelementes in normal Koorinaten aus dem Riemannschen Krümmgstensor. Math. Ann., t. 93, 1925, p. 46. MR1512221JFM50.0492.07
  18. [18] J. Leray, Hyperbolic Partial Differential Equations. Mimeographed Notes, Institute of Advanced Study, Princeton. 
  19. [19] A. Lichnerowicz, Propagateurs et commutateurs en relativité générale. Publ. Math. I. H. E. S., n° 10, 1961, p. 293. Zbl0098.42607MR158726
  20. [20] D. Lovelock, The Lanczos identity and its generalizations. Atti. Accad. Naz. Lincei, t. 42, 1967, p. 187. Zbl0194.22802MR216427
  21. [21] M. Mathisson, Eine Lösungsmethode fur Differentialgleichungen vom normalen hyperbolischen Typus. Math. Ann., t. 107, 1932, p. 400. JFM58.1561.01
  22. [22] M. Mathisson, Le problème de M. Hadamard relatif à la diffusion des ondes. Acta. Math., t. 71, 1939, p. 249. Zbl0022.22802MR728
  23. [23] R.G. McLenaghan, An explicit determination of the empty space-times on which the wave equation satisfies Huygens' principle. Proc. Cambridge Philos. Soc., t. 65, 1969, p. 139. Zbl0182.13403MR234700
  24. [24] R. Penrose, A spinor approach to general relativity. Ann. Physics, t. 10, 1960, p. 171. Zbl0091.21404MR115765
  25. [25] A.Z. Petrov, Einstein-Räume. Akademie Verlag, Berlin, 1964. Zbl0114.21003MR162594
  26. [26] H.S. Ruse, A.G. Walker and T.J. Willmore, Harmonic Spaces. Edizioni Cremonese, Rome, 1961. Zbl0134.39202MR142062
  27. [27] J.A. Schouten, Ricci-Calculus. Springer-Verlag, Berlin, 1954. Zbl0057.37803MR516659
  28. [28] S.L. Sobolev, Méthode nouvelle à résoudre le problème de Cauchy pour les équations linéaires hyperboliques normales. Mat. Sb. (N. S.), t. 1, 1936, p. 39. Zbl0014.05902JFM62.0568.01
  29. [29] K.L. Stellmacher, Ein Beispiel einer Huygensschen Differentialgleichung. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, t. 10, 1953, p. 133. Zbl0052.09901MR60695
  30. [30] K.L. Stellmacher, Eine Klasse huygenscher Differentialgleichungen und ihre Integration. Math. Ann., t. 130, 1955, p. 219. Zbl0134.31101MR73831
  31. [31] P. Szekeres, Conformal Tensors. Proc. Roy. Soc. London, A, t. 304, 1968, p. 113. Zbl0159.23903
  32. [32] V. Wünsch, Über selbstadjungierte Huygenssche Differentialgleichungen mit vier unabhangigen Variablen. Math. Nachr., t. 47, 1970, p. 131. Zbl0211.40803MR298221

Citations in EuDML Documents

top
  1. J. Carminati, R. G. McLenaghan, An explicit determination of the space-times on which the conformally invariant scalar wave equation satisfies Huygens' principle. — Part II : Petrov type D space-times
  2. J. Carminati, R. G. McLenaghan, An explicit determination of the space-times on which the conformally invariant scalar wave equation satisfies Huygens' principle. Part III : Petrov type III space-times
  3. V. Wünsch, Huygens' principle on Petrov type N space-times
  4. R. G. McLenaghan, G. C. Williams, An explicit determination of the Petrov type D spacetimes on which Weyl's neutrino equation and Maxwell's equations satisfy Huygens' principle
  5. W. G. Anderson, R. G. McLenaghan, F. D. Sasse, Huygens' principle for the non-self-adjoint scalar wave equation on Petrov type III space-times
  6. R. G. McLenaghan, F. D. Sasse, Nonexistence of Petrov type III space-times on which Weyl's neutrino equation or Maxwell's equations satisfy Huygens' principle
  7. V. Wünsch, Moments and Huygens' principle for conformally invariant field equations in curved space-times
  8. J. Carminati, S. R. Czapor, R. G. McLenaghan, G. C. Williams, Consequences of the validity of Huygens' principle for the conformally invariant scalar wave equation, Weyl's neutrino equation and Maxwell's equations on Petrov type II space-times
  9. R. G. McLenaghan, T. F. Walton, An explicit determination of the non-self-adjoint wave equations on curved space-time that satisfy Huygens' principle. Part I : Petrov type N background space-times
  10. J. Carminati, R. G. McLenaghan, An explicit determination of the Petrov type N space-times on which the conformally invariant scalar wave equation satisfies Huygens' principle

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.