On the validity of Huygens' principle for second order partial differential equations with four independent variables. Part I : derivation of necessary conditions
Annales de l'I.H.P. Physique théorique (1974)
- Volume: 20, Issue: 2, page 153-188
- ISSN: 0246-0211
Access Full Article
topHow to cite
topMcLenaghan, R. G.. "On the validity of Huygens' principle for second order partial differential equations with four independent variables. Part I : derivation of necessary conditions." Annales de l'I.H.P. Physique théorique 20.2 (1974): 153-188. <http://eudml.org/doc/75801>.
@article{McLenaghan1974,
author = {McLenaghan, R. G.},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {2},
pages = {153-188},
publisher = {Gauthier-Villars},
title = {On the validity of Huygens' principle for second order partial differential equations with four independent variables. Part I : derivation of necessary conditions},
url = {http://eudml.org/doc/75801},
volume = {20},
year = {1974},
}
TY - JOUR
AU - McLenaghan, R. G.
TI - On the validity of Huygens' principle for second order partial differential equations with four independent variables. Part I : derivation of necessary conditions
JO - Annales de l'I.H.P. Physique théorique
PY - 1974
PB - Gauthier-Villars
VL - 20
IS - 2
SP - 153
EP - 188
LA - eng
UR - http://eudml.org/doc/75801
ER -
References
top- [1] L. Asgeirsson, Some hints on Huygens' principle and Hadamard's conjecture. Comm. Pure Appl. Math., t. 9, 1956, p. 307. Zbl0074.31101MR82034
- [2] Y. Bruhat, Théorème d'existence pour certains systèmes d'équations aux dérivées partielles non linéaires. Acta Math., t. 88, 1952, p. 141. Zbl0049.19201MR53338
- [3] M. Cahen and R. McLenaghan, Métriques des espaces lorentziens symétriques à quatre dimensions. C. R. Acad. Sci. Paris, t. 266, 1968, p. 1125. Zbl0172.27904MR231326
- [4] M. Chevalier, Sur le noyau de diffusion de l'opérateur laplacien. C. R. Acad. Sci. Paris, t. 264, 1967, p. 380. MR226555
- [5] E. Cotton, Sur les invariants différentiels de quelques équations linéaires aux dérivées partielles du second ordre. Ann. Sc. Ec. Norm. Supérieure, t. 17, 1900, p. 211. Zbl31.0379.02MR1508982JFM31.0379.02
- [6] R. Courant and D. Hilbert, Methods of mathematical physics, t. 2, Interscience, New York, 1962. Zbl0099.29504
- [7] A. Douglis, The problem of Cauchy for linear hyperbolic equations of second order. Comm. Pure Appl. Math., t. 7, 1954, p. 271. Zbl0059.08801MR62931
- [8] A. Douglis, A criterion for the validity of Huygens' principle. Comm. Pure Appl. Math., t. 9, 1956, p. 391. Zbl0075.09701MR82035
- [9] J.C. Du Plessis, Polynomial conformal tensors. Proc. Cambridge Philos. Soc., t. 68, 1970, p. 329. Zbl0203.54603MR259802
- [10] F.G. Friedlander, The wave equation in a curved space-time. Cambridge University Press (to appear). Zbl0316.53021MR460898
- [11] P. Günther, Zur Gültigkeit des Huygensschen Princips bei partiellen Differentialgleichungen von normalen hyperbolischen Typus. S.-B. Sachs. Akad. Wiss. Leipzig Math.-Natur. Kl., t. 100, 1952, p. 1. Zbl0046.32201MR50136
- [12] P. Günther, Uber einige spezielle Probleme aus der Theorie der linearen partiellen Differentialgleichungen zweiter Ordnung. S.-B. Sachs. Akad. Wiss. Leipzig Math.- Natur. Kl., t. 102, 1957, p. 1. Zbl0085.08202MR109937
- [13] P. Günther, Ein Beispiel einer nichttrivalen Huygensschen Differentialgleichungen mit vier unabhängigen Variablen. Arch. Rational Mech. Anal., t. 18, 1965, p. 103. Zbl0125.05404MR174865
- [14] J. Hadamard, Lectures on Cauchy's problem in linear partial differential equations. Yale University Press, New Haven, 1923. Zbl49.0725.04JFM49.0725.04
- [15] J. Hadamard, The problem of diffusion of waves. Ann. of Math., t. 43, 1942, p. 510. Zbl0063.01841MR6809
- [16] S. Helgason, Lie Groups and Symmetric Spaces. Article in Batelle Recontres1967, lectures in mathematics and physics. W. A. Benjamin, Inc., New York, 1968. Zbl0177.50601MR236325
- [17] G. Herglotz, Uber die Bestimmung eines Linienelementes in normal Koorinaten aus dem Riemannschen Krümmgstensor. Math. Ann., t. 93, 1925, p. 46. MR1512221JFM50.0492.07
- [18] J. Leray, Hyperbolic Partial Differential Equations. Mimeographed Notes, Institute of Advanced Study, Princeton.
- [19] A. Lichnerowicz, Propagateurs et commutateurs en relativité générale. Publ. Math. I. H. E. S., n° 10, 1961, p. 293. Zbl0098.42607MR158726
- [20] D. Lovelock, The Lanczos identity and its generalizations. Atti. Accad. Naz. Lincei, t. 42, 1967, p. 187. Zbl0194.22802MR216427
- [21] M. Mathisson, Eine Lösungsmethode fur Differentialgleichungen vom normalen hyperbolischen Typus. Math. Ann., t. 107, 1932, p. 400. JFM58.1561.01
- [22] M. Mathisson, Le problème de M. Hadamard relatif à la diffusion des ondes. Acta. Math., t. 71, 1939, p. 249. Zbl0022.22802MR728
- [23] R.G. McLenaghan, An explicit determination of the empty space-times on which the wave equation satisfies Huygens' principle. Proc. Cambridge Philos. Soc., t. 65, 1969, p. 139. Zbl0182.13403MR234700
- [24] R. Penrose, A spinor approach to general relativity. Ann. Physics, t. 10, 1960, p. 171. Zbl0091.21404MR115765
- [25] A.Z. Petrov, Einstein-Räume. Akademie Verlag, Berlin, 1964. Zbl0114.21003MR162594
- [26] H.S. Ruse, A.G. Walker and T.J. Willmore, Harmonic Spaces. Edizioni Cremonese, Rome, 1961. Zbl0134.39202MR142062
- [27] J.A. Schouten, Ricci-Calculus. Springer-Verlag, Berlin, 1954. Zbl0057.37803MR516659
- [28] S.L. Sobolev, Méthode nouvelle à résoudre le problème de Cauchy pour les équations linéaires hyperboliques normales. Mat. Sb. (N. S.), t. 1, 1936, p. 39. Zbl0014.05902JFM62.0568.01
- [29] K.L. Stellmacher, Ein Beispiel einer Huygensschen Differentialgleichung. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, t. 10, 1953, p. 133. Zbl0052.09901MR60695
- [30] K.L. Stellmacher, Eine Klasse huygenscher Differentialgleichungen und ihre Integration. Math. Ann., t. 130, 1955, p. 219. Zbl0134.31101MR73831
- [31] P. Szekeres, Conformal Tensors. Proc. Roy. Soc. London, A, t. 304, 1968, p. 113. Zbl0159.23903
- [32] V. Wünsch, Über selbstadjungierte Huygenssche Differentialgleichungen mit vier unabhangigen Variablen. Math. Nachr., t. 47, 1970, p. 131. Zbl0211.40803MR298221
Citations in EuDML Documents
top- J. Carminati, R. G. McLenaghan, An explicit determination of the space-times on which the conformally invariant scalar wave equation satisfies Huygens' principle. — Part II : Petrov type D space-times
- J. Carminati, R. G. McLenaghan, An explicit determination of the space-times on which the conformally invariant scalar wave equation satisfies Huygens' principle. Part III : Petrov type III space-times
- V. Wünsch, Huygens' principle on Petrov type N space-times
- R. G. McLenaghan, G. C. Williams, An explicit determination of the Petrov type D spacetimes on which Weyl's neutrino equation and Maxwell's equations satisfy Huygens' principle
- W. G. Anderson, R. G. McLenaghan, F. D. Sasse, Huygens' principle for the non-self-adjoint scalar wave equation on Petrov type III space-times
- R. G. McLenaghan, F. D. Sasse, Nonexistence of Petrov type III space-times on which Weyl's neutrino equation or Maxwell's equations satisfy Huygens' principle
- V. Wünsch, Moments and Huygens' principle for conformally invariant field equations in curved space-times
- J. Carminati, S. R. Czapor, R. G. McLenaghan, G. C. Williams, Consequences of the validity of Huygens' principle for the conformally invariant scalar wave equation, Weyl's neutrino equation and Maxwell's equations on Petrov type II space-times
- R. G. McLenaghan, T. F. Walton, An explicit determination of the non-self-adjoint wave equations on curved space-time that satisfy Huygens' principle. Part I : Petrov type N background space-times
- J. Carminati, R. G. McLenaghan, An explicit determination of the Petrov type N space-times on which the conformally invariant scalar wave equation satisfies Huygens' principle
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.