Scattering theory with singular potentials. I. The two-body problem

Derek W. Robinson

Annales de l'I.H.P. Physique théorique (1974)

  • Volume: 21, Issue: 3, page 185-215
  • ISSN: 0246-0211

How to cite

top

Robinson, Derek W.. "Scattering theory with singular potentials. I. The two-body problem." Annales de l'I.H.P. Physique théorique 21.3 (1974): 185-215. <http://eudml.org/doc/75826>.

@article{Robinson1974,
author = {Robinson, Derek W.},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {3},
pages = {185-215},
publisher = {Gauthier-Villars},
title = {Scattering theory with singular potentials. I. The two-body problem},
url = {http://eudml.org/doc/75826},
volume = {21},
year = {1974},
}

TY - JOUR
AU - Robinson, Derek W.
TI - Scattering theory with singular potentials. I. The two-body problem
JO - Annales de l'I.H.P. Physique théorique
PY - 1974
PB - Gauthier-Villars
VL - 21
IS - 3
SP - 185
EP - 215
LA - eng
UR - http://eudml.org/doc/75826
ER -

References

top
  1. [1] R.B. Lavine, Commun. Math. Phys., t. 20, 1971, p. 301-323. Zbl0207.13706MR293945
  2. [2] R.B. Lavine, J. Math. Phys., t. 14, 1973, p. 376-379. Zbl0269.47005MR317689
  3. [3] T. Kato, Israel Journ. Math., t. 13, n° 1-2, 1972, p. 135-148. Zbl0246.35025MR333833
  4. [4] B. Simon, Arch. Rat. Mech. Anal., 1973. 
  5. [5] E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equations. McGraw-Hill, New York, 1955. Zbl0064.33002MR69338
  6. [6] T. Kato, Theory for Linear Operators. Springer-Verlag, Berlin, 1966. MR203473
  7. [7] M. Reed and B. Simon, Methods of Modern Mathematical Physic. Vol. II, Academic Press (to be published). 
  8. [8] T. Kato, Math. Ann., t. 162, 1969, p. 258-279. Zbl0139.31203MR190801
  9. [9] J. Kupsch and W. Sandhas, Commun. Math. Phys., t. 2, 1966, p. 147-154. Zbl0139.46002MR195419
  10. [10] B. Simon, Quantum Mechanics for Hamiltonians Defined as Quadratic Forms. Princeton University Press, Princeton, 1971. Zbl0232.47053MR455975
  11. [11] B. Simon, Commun. Pure Appl. Math., t. 22, 1969, p. 531-538. Zbl0167.11003

Citations in EuDML Documents

top
  1. M. Combescure, J. Ginibre, Spectral and scattering theory for the Schrödinger operator with strongly oscillating potentials
  2. Eric Mourre, Applications de la méthode de Lavine au problème à trois corps
  3. M. Combescure-Moulin, J. Ginibre, Essential self-adjointness of many particle Schrödinger hamiltonians with singular two-body potentials
  4. V. F. Kovalenko, Yu. A. Semenov, Essential self-adjointness of many-particle hamiltonian operators of Schrödinger type with singular two-particle potentials

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.