Scattering theory with singular potentials. I. The two-body problem
Annales de l'I.H.P. Physique théorique (1974)
- Volume: 21, Issue: 3, page 185-215
- ISSN: 0246-0211
Access Full Article
topHow to cite
topRobinson, Derek W.. "Scattering theory with singular potentials. I. The two-body problem." Annales de l'I.H.P. Physique théorique 21.3 (1974): 185-215. <http://eudml.org/doc/75826>.
@article{Robinson1974,
author = {Robinson, Derek W.},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {3},
pages = {185-215},
publisher = {Gauthier-Villars},
title = {Scattering theory with singular potentials. I. The two-body problem},
url = {http://eudml.org/doc/75826},
volume = {21},
year = {1974},
}
TY - JOUR
AU - Robinson, Derek W.
TI - Scattering theory with singular potentials. I. The two-body problem
JO - Annales de l'I.H.P. Physique théorique
PY - 1974
PB - Gauthier-Villars
VL - 21
IS - 3
SP - 185
EP - 215
LA - eng
UR - http://eudml.org/doc/75826
ER -
References
top- [1] R.B. Lavine, Commun. Math. Phys., t. 20, 1971, p. 301-323. Zbl0207.13706MR293945
- [2] R.B. Lavine, J. Math. Phys., t. 14, 1973, p. 376-379. Zbl0269.47005MR317689
- [3] T. Kato, Israel Journ. Math., t. 13, n° 1-2, 1972, p. 135-148. Zbl0246.35025MR333833
- [4] B. Simon, Arch. Rat. Mech. Anal., 1973.
- [5] E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equations. McGraw-Hill, New York, 1955. Zbl0064.33002MR69338
- [6] T. Kato, Theory for Linear Operators. Springer-Verlag, Berlin, 1966. MR203473
- [7] M. Reed and B. Simon, Methods of Modern Mathematical Physic. Vol. II, Academic Press (to be published).
- [8] T. Kato, Math. Ann., t. 162, 1969, p. 258-279. Zbl0139.31203MR190801
- [9] J. Kupsch and W. Sandhas, Commun. Math. Phys., t. 2, 1966, p. 147-154. Zbl0139.46002MR195419
- [10] B. Simon, Quantum Mechanics for Hamiltonians Defined as Quadratic Forms. Princeton University Press, Princeton, 1971. Zbl0232.47053MR455975
- [11] B. Simon, Commun. Pure Appl. Math., t. 22, 1969, p. 531-538. Zbl0167.11003
Citations in EuDML Documents
top- M. Combescure, J. Ginibre, Spectral and scattering theory for the Schrödinger operator with strongly oscillating potentials
- Eric Mourre, Applications de la méthode de Lavine au problème à trois corps
- M. Combescure-Moulin, J. Ginibre, Essential self-adjointness of many particle Schrödinger hamiltonians with singular two-body potentials
- V. F. Kovalenko, Yu. A. Semenov, Essential self-adjointness of many-particle hamiltonian operators of Schrödinger type with singular two-particle potentials
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.