Time decay of finite energy solutions of the non linear Klein-Gordon and Schrödinger equations
Annales de l'I.H.P. Physique théorique (1985)
- Volume: 43, Issue: 4, page 399-442
- ISSN: 0246-0211
Access Full Article
topHow to cite
topGinibre, J., and Velo, G.. "Time decay of finite energy solutions of the non linear Klein-Gordon and Schrödinger equations." Annales de l'I.H.P. Physique théorique 43.4 (1985): 399-442. <http://eudml.org/doc/76307>.
@article{Ginibre1985,
author = {Ginibre, J., Velo, G.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {time decay; finite energy solutions; nonlinear Klein-Gordon equation},
language = {eng},
number = {4},
pages = {399-442},
publisher = {Gauthier-Villars},
title = {Time decay of finite energy solutions of the non linear Klein-Gordon and Schrödinger equations},
url = {http://eudml.org/doc/76307},
volume = {43},
year = {1985},
}
TY - JOUR
AU - Ginibre, J.
AU - Velo, G.
TI - Time decay of finite energy solutions of the non linear Klein-Gordon and Schrödinger equations
JO - Annales de l'I.H.P. Physique théorique
PY - 1985
PB - Gauthier-Villars
VL - 43
IS - 4
SP - 399
EP - 442
LA - eng
KW - time decay; finite energy solutions; nonlinear Klein-Gordon equation
UR - http://eudml.org/doc/76307
ER -
References
top- [1] J. Bergh, J. Löfström, Interpolation Spaces, Springer, Berlin, 1976. Zbl0344.46071MR482275
- [2] M.S. Birman, M.Z. Solomjak, Vest. LSU, t. 24, 1969 ; translation : Vest. LSU Math., t. 2, 1975, p. 9-27. MR246163
- [3] P. Brenner, Math. Scand., t. 51, 1982, p. 333-360. Zbl0517.35011MR690536
- [4] P. Brenner, Math. Z., t. 186, 1984, p. 383-391. Zbl0524.35084MR744828
- [5] P. Brenner, J. Diff. Eq., t. 56, 1985, p. 310-344. Zbl0513.35066MR780495
- [6] P. Brenner, private communication.
- [7] J. Ginibre, G. Velo, J. Funct. Anal., t. 32, 1979, p. 1-32. Zbl0396.35028MR533219
- [8] J. Ginibre, G. Velo, J. Funct. Anal., t. 32, 1979, p. 33-71. Zbl0396.35029MR533219
- [9] J. Ginibre, G. Velo, Ann. IHP (Anal. non lin.), t. 2, 1985, p. 309-327. Zbl0586.35042MR801582
- [10] J. Ginibre, G. Velo, Math. Z., t. 189, 1985, p. 487-505. Zbl0549.35108MR786279
- [11] J. Ginibre, G. Velo, J. Math. Pur. Appl., in press.
- [12] L. Hörmander, The analysis of linear partial differential operators I, Springer, Berlin, 1983. Zbl0521.35001MR705278
- [13] J.E. Lin, W. Strauss, J. Funct. Anal., t. 30, 1978, p. 245-263. Zbl0395.35070MR515228
- [14] J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod andGauthier-Villars, Paris, 1969. Zbl0189.40603MR259693
- [15] C. Morawetz, W. Strauss, Comm. Pure Appl. Math., t. 25, 1972, p. 1-31. Zbl0228.35055MR303097
- [16] H. Pecher, Math. Z., t. 136, 1974, p. 67-92. Zbl0269.35059MR340825
- [17] H. Pecher, Math. Z., t. 185, 1984, p. 245-263.
- [18] H. Pecher, J. Funct. Anal., t. 63, 1985, p. 101-122. Zbl0588.35061MR795519
- [19] W. Strauss, J. Funct. Anal., t. 41, 1981, p. 110-133. Zbl0466.47006MR614228
- [20] W. Strauss, J. Funct. Anal., t. 43, 1981, p. 281-293. Zbl0494.35068MR636702
- [21] Y. Tsutsumi, Global existence and asymptotic behaviour of solutions for nonlinear Schrödinger equations, Thesis, Tokyo, 1984.
- [22] Y. Tsutsumi, Ann. IHP (Phys. Theor.), t. 43, 1985, p. 321-347. Zbl0612.35104MR824843
- [23] M. Tsutsumi, J. Math. Soc. Japan, t. 35, 1983, p. 521-538. Zbl0554.35095MR702775
- [24] M. Tsutsumi, N. Hayashi, Scattering of solutions of nonlinear Klein-Gordon Equations in higher space dimensions. Nonlinear PDE '83 Proceedings, Lecture Notes in numerical and applied analysis, Vol. 6, North-Holland. Zbl0566.35078MR839278
Citations in EuDML Documents
top- Pierre Germain, Global existence for coupled Klein-Gordon equations with different speeds
- Alain Bachelot, Convergence dans de la solution de l’équation de Klein-Gordon vers celle de l’équation des ondes
- T. Ozawa, K. Tsutaya, Y. Tsutsumi, Normal form and global solutions for the Klein-Gordon-Zakharov equations
- J. Ginibre, T. Ozawa, G. Velo, On the existence of the wave operators for a class of nonlinear Schrödinger equations
- J. Ginibre, G. Velo, Conformal invariance and time decay for non linear wave equations. II
- Jean Ginibre, Théorie de la diffusion pour des équations semi linéaires
- Claude Zuily, Solutions en grand temps d'équations d'ondes non linéaires
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.