Time decay of finite energy solutions of the non linear Klein-Gordon and Schrödinger equations

J. Ginibre; G. Velo

Annales de l'I.H.P. Physique théorique (1985)

  • Volume: 43, Issue: 4, page 399-442
  • ISSN: 0246-0211

How to cite

top

Ginibre, J., and Velo, G.. "Time decay of finite energy solutions of the non linear Klein-Gordon and Schrödinger equations." Annales de l'I.H.P. Physique théorique 43.4 (1985): 399-442. <http://eudml.org/doc/76307>.

@article{Ginibre1985,
author = {Ginibre, J., Velo, G.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {time decay; finite energy solutions; nonlinear Klein-Gordon equation},
language = {eng},
number = {4},
pages = {399-442},
publisher = {Gauthier-Villars},
title = {Time decay of finite energy solutions of the non linear Klein-Gordon and Schrödinger equations},
url = {http://eudml.org/doc/76307},
volume = {43},
year = {1985},
}

TY - JOUR
AU - Ginibre, J.
AU - Velo, G.
TI - Time decay of finite energy solutions of the non linear Klein-Gordon and Schrödinger equations
JO - Annales de l'I.H.P. Physique théorique
PY - 1985
PB - Gauthier-Villars
VL - 43
IS - 4
SP - 399
EP - 442
LA - eng
KW - time decay; finite energy solutions; nonlinear Klein-Gordon equation
UR - http://eudml.org/doc/76307
ER -

References

top
  1. [1] J. Bergh, J. Löfström, Interpolation Spaces, Springer, Berlin, 1976. Zbl0344.46071MR482275
  2. [2] M.S. Birman, M.Z. Solomjak, Vest. LSU, t. 24, 1969 ; translation : Vest. LSU Math., t. 2, 1975, p. 9-27. MR246163
  3. [3] P. Brenner, Math. Scand., t. 51, 1982, p. 333-360. Zbl0517.35011MR690536
  4. [4] P. Brenner, Math. Z., t. 186, 1984, p. 383-391. Zbl0524.35084MR744828
  5. [5] P. Brenner, J. Diff. Eq., t. 56, 1985, p. 310-344. Zbl0513.35066MR780495
  6. [6] P. Brenner, private communication. 
  7. [7] J. Ginibre, G. Velo, J. Funct. Anal., t. 32, 1979, p. 1-32. Zbl0396.35028MR533219
  8. [8] J. Ginibre, G. Velo, J. Funct. Anal., t. 32, 1979, p. 33-71. Zbl0396.35029MR533219
  9. [9] J. Ginibre, G. Velo, Ann. IHP (Anal. non lin.), t. 2, 1985, p. 309-327. Zbl0586.35042MR801582
  10. [10] J. Ginibre, G. Velo, Math. Z., t. 189, 1985, p. 487-505. Zbl0549.35108MR786279
  11. [11] J. Ginibre, G. Velo, J. Math. Pur. Appl., in press. 
  12. [12] L. Hörmander, The analysis of linear partial differential operators I, Springer, Berlin, 1983. Zbl0521.35001MR705278
  13. [13] J.E. Lin, W. Strauss, J. Funct. Anal., t. 30, 1978, p. 245-263. Zbl0395.35070MR515228
  14. [14] J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod andGauthier-Villars, Paris, 1969. Zbl0189.40603MR259693
  15. [15] C. Morawetz, W. Strauss, Comm. Pure Appl. Math., t. 25, 1972, p. 1-31. Zbl0228.35055MR303097
  16. [16] H. Pecher, Math. Z., t. 136, 1974, p. 67-92. Zbl0269.35059MR340825
  17. [17] H. Pecher, Math. Z., t. 185, 1984, p. 245-263. 
  18. [18] H. Pecher, J. Funct. Anal., t. 63, 1985, p. 101-122. Zbl0588.35061MR795519
  19. [19] W. Strauss, J. Funct. Anal., t. 41, 1981, p. 110-133. Zbl0466.47006MR614228
  20. [20] W. Strauss, J. Funct. Anal., t. 43, 1981, p. 281-293. Zbl0494.35068MR636702
  21. [21] Y. Tsutsumi, Global existence and asymptotic behaviour of solutions for nonlinear Schrödinger equations, Thesis, Tokyo, 1984. 
  22. [22] Y. Tsutsumi, Ann. IHP (Phys. Theor.), t. 43, 1985, p. 321-347. Zbl0612.35104MR824843
  23. [23] M. Tsutsumi, J. Math. Soc. Japan, t. 35, 1983, p. 521-538. Zbl0554.35095MR702775
  24. [24] M. Tsutsumi, N. Hayashi, Scattering of solutions of nonlinear Klein-Gordon Equations in higher space dimensions. Nonlinear PDE '83 Proceedings, Lecture Notes in numerical and applied analysis, Vol. 6, North-Holland. Zbl0566.35078MR839278

Citations in EuDML Documents

top
  1. Pierre Germain, Global existence for coupled Klein-Gordon equations with different speeds
  2. Alain Bachelot, Convergence dans L p ( R n + 1 ) de la solution de l’équation de Klein-Gordon vers celle de l’équation des ondes
  3. T. Ozawa, K. Tsutaya, Y. Tsutsumi, Normal form and global solutions for the Klein-Gordon-Zakharov equations
  4. J. Ginibre, T. Ozawa, G. Velo, On the existence of the wave operators for a class of nonlinear Schrödinger equations
  5. J. Ginibre, G. Velo, Conformal invariance and time decay for non linear wave equations. II
  6. Jean Ginibre, Théorie de la diffusion pour des équations semi linéaires
  7. Claude Zuily, Solutions en grand temps d'équations d'ondes non linéaires

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.