Scattering theory for Hartree type equations
Nakao Hayashi; Yoshio Tsutsumi
Annales de l'I.H.P. Physique théorique (1987)
- Volume: 46, Issue: 2, page 187-213
- ISSN: 0246-0211
Access Full Article
topHow to cite
topHayashi, Nakao, and Tsutsumi, Yoshio. "Scattering theory for Hartree type equations." Annales de l'I.H.P. Physique théorique 46.2 (1987): 187-213. <http://eudml.org/doc/76357>.
@article{Hayashi1987,
author = {Hayashi, Nakao, Tsutsumi, Yoshio},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {asymptotic behavior in time; scattering theory; Hartree type equation; asymptotic completeness; wave operators; scattering states},
language = {eng},
number = {2},
pages = {187-213},
publisher = {Gauthier-Villars},
title = {Scattering theory for Hartree type equations},
url = {http://eudml.org/doc/76357},
volume = {46},
year = {1987},
}
TY - JOUR
AU - Hayashi, Nakao
AU - Tsutsumi, Yoshio
TI - Scattering theory for Hartree type equations
JO - Annales de l'I.H.P. Physique théorique
PY - 1987
PB - Gauthier-Villars
VL - 46
IS - 2
SP - 187
EP - 213
LA - eng
KW - asymptotic behavior in time; scattering theory; Hartree type equation; asymptotic completeness; wave operators; scattering states
UR - http://eudml.org/doc/76357
ER -
References
top- [1] J.E. Barab, Nonexistence of asymptotic free solutions for a nonlinear Schrödinger equation. J. Math. Phys., t. 25, 1984, p. 3270-3273. Zbl0554.35123MR761850
- [2] P. Brenner, On space-time means and everywhere defined scattering operators for nonlinear Klein-Gordon equations. Math. Z., t. 186, 1984, p. 383-391. Zbl0524.35084MR744828
- [3] P. Brenner, On scattering and everywhere defined scattering operators for non–linear Klein-Gordon equations. J. Differential Equations, t. 56, 1985, p. 310-344. Zbl0513.35066MR780495
- [4] J.M. Chadam and R.T. Glassey, Global existence of solutions to the Cauchy problem for time dependent Hartree equations. J. Math. Phys., t. 16, 1975, p. 1122-1130. Zbl0299.35084MR413843
- [5] A. Friedman, Partial Differential Equations. Holt-Rinehart and Winston, New York, 1969. Zbl0224.35002MR445088
- [6] J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equation I, II. J. Funct. Anal, t. 32, 1979, p. 1-32, 33-71 ; III, Ann. Inst. Henri Poincaré, Physique Théorique, t. 28, 1978, p. 287-316. Zbl0397.35012MR533219
- [7] J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations with non local interactin. Math. Z., t. 170, 1980, p. 109-136. Zbl0407.35063MR562582
- [8] J. Ginibre and G. Velo, Sur une équation de Schrödinger non linéaire avec interaction non locale, in Nonlinear partial differential equations and their applications. Collège de France, Séminaire, vol. II, Pitman, Boston, 1981. Zbl0497.35024MR652511
- [9] J. Ginibre and G. Velo, Scattering theory in the energy space for a class of non–linear Schrödinger equations, J. Math. pures et appl., t. 64, 1985, p. 363-401. Zbl0535.35069MR839728
- [10] R.T. Glassey, Asymptotic behavior of solutions to a certain nonlinear-Hartree equations, Comm. Math. Phys., t. 53, 1977, p. 9-18. Zbl0339.35013MR486956
- [11] N. Hayashi and M. Tsutsumi, L∞-decay of classical solutions for nonlinear Schrödinger equations, preprint. Zbl0651.35014
- [12] N. Hayashi, K. Nakamitsu and M. Tsutsumi, On solutions of the initial value problem for the nonlinear Schrödinger equations, to appear in J. Funct. Anal. Zbl0657.35033MR880978
- [13] N. Hayashi and Y. Tsutsumi, Remarks on the scattering problem for nonlinear Schrödinger equations, preprint. MR921265
- [14] W. Hunziker, On the space-time behavior of Schrödinger wavefunctions. J. Math. Phys., t. 7, 1965, p. 300-304. Zbl0151.43801MR193939
- [15] A. Jensen, Commutator methods and a smoothing property of the Schrödinger evolution group. Math. Z., t. 191, 1986, p. 53-59. Zbl0594.35032MR812602
- [16] E.M. Stein, Singular Integral and Differentiability Properties of Functions, Princeton Univ. Press. Princeton Math. Series30, 1970. Zbl0207.13501MR290095
- [17] W.A. Strauss, Nonlinear invariant wave equations, in Invariant Wave Equations (Erice, 1977), Lecture Notes in Physics, t. 78, Springer-Verlag, Berlin-Heidelberg- New York, 1978, p. 197-249. MR498955
- [18] W.A. Strauss, Nonlinear scattering theory at low energy. J. Funct. Anal., t. 41, 1981, p. 110-133. Zbl0466.47006MR614228
- [19] W.A. Strauss, Nonlinear Scattering theory at low energy: Sequel. J. Funct. Anal., t. 43, p. 281-293, Zbl0494.35068MR636702
- [20] R.S. Strichartz, Restrictions of Fourier Transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J., t. 44, 1977, p. 705-714. Zbl0372.35001MR512086
- [21] Y. Tsutsumi, Global existence and asymptotic behavior of solutions for nonlinear Schrödinger equations, Doctor Thesis, Univ. of Tokyo, 1985.
- [22] Y. Tsutsumi, Scattering problem for nonlinear Schrödinger equations. Ann. Inst. Henri Poincaré, Physique Théorique, t. 43, 1985, p. 321-347. Zbl0612.35104MR824843
- [23] Y. Tsutsumi and K. Yajima, The asymptotic behavior of nonlinear Schrödinger equations, Bull. (New Series). Amer. Math. Soc., t. 11, 1984, p. 186-188. Zbl0555.35028MR741737
- [24] K. Yajima, The surfboard Schrödinger equations. Comm. Math. Phys., t. 96, 1984, p. 349-360. Zbl0599.35037MR769352
- [25] J. Ginibre, Private communication.
- [26] T. Kato, On nonlinear Schrödinger equations, preprint, University of California, Berkeley, 1986. MR1037322
- [27] Y. Tsutsumi, L2-solutions for nonlinear Schrödinger equations and nonlinear groups, to appear in Funkcialaj Ekvacioj. Zbl0638.35021MR915266
Citations in EuDML Documents
top- Changxing Miao, Guixiang Xu, Lifeng Zhao, Global well-posedness and scattering for the defocusing -subcritical Hartree equation in
- Jean Ginibre, Giorgio Velo, Long range scattering and modified wave operators for Hartree equations
- Nakao Hayashi, Tohru Ozawa, Scattering theory in the weighted spaces for some Schrödinger equations
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.