Scattering theory for Hartree type equations

Nakao Hayashi; Yoshio Tsutsumi

Annales de l'I.H.P. Physique théorique (1987)

  • Volume: 46, Issue: 2, page 187-213
  • ISSN: 0246-0211

How to cite

top

Hayashi, Nakao, and Tsutsumi, Yoshio. "Scattering theory for Hartree type equations." Annales de l'I.H.P. Physique théorique 46.2 (1987): 187-213. <http://eudml.org/doc/76357>.

@article{Hayashi1987,
author = {Hayashi, Nakao, Tsutsumi, Yoshio},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {asymptotic behavior in time; scattering theory; Hartree type equation; asymptotic completeness; wave operators; scattering states},
language = {eng},
number = {2},
pages = {187-213},
publisher = {Gauthier-Villars},
title = {Scattering theory for Hartree type equations},
url = {http://eudml.org/doc/76357},
volume = {46},
year = {1987},
}

TY - JOUR
AU - Hayashi, Nakao
AU - Tsutsumi, Yoshio
TI - Scattering theory for Hartree type equations
JO - Annales de l'I.H.P. Physique théorique
PY - 1987
PB - Gauthier-Villars
VL - 46
IS - 2
SP - 187
EP - 213
LA - eng
KW - asymptotic behavior in time; scattering theory; Hartree type equation; asymptotic completeness; wave operators; scattering states
UR - http://eudml.org/doc/76357
ER -

References

top
  1. [1] J.E. Barab, Nonexistence of asymptotic free solutions for a nonlinear Schrödinger equation. J. Math. Phys., t. 25, 1984, p. 3270-3273. Zbl0554.35123MR761850
  2. [2] P. Brenner, On space-time means and everywhere defined scattering operators for nonlinear Klein-Gordon equations. Math. Z., t. 186, 1984, p. 383-391. Zbl0524.35084MR744828
  3. [3] P. Brenner, On scattering and everywhere defined scattering operators for non–linear Klein-Gordon equations. J. Differential Equations, t. 56, 1985, p. 310-344. Zbl0513.35066MR780495
  4. [4] J.M. Chadam and R.T. Glassey, Global existence of solutions to the Cauchy problem for time dependent Hartree equations. J. Math. Phys., t. 16, 1975, p. 1122-1130. Zbl0299.35084MR413843
  5. [5] A. Friedman, Partial Differential Equations. Holt-Rinehart and Winston, New York, 1969. Zbl0224.35002MR445088
  6. [6] J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equation I, II. J. Funct. Anal, t. 32, 1979, p. 1-32, 33-71 ; III, Ann. Inst. Henri Poincaré, Physique Théorique, t. 28, 1978, p. 287-316. Zbl0397.35012MR533219
  7. [7] J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations with non local interactin. Math. Z., t. 170, 1980, p. 109-136. Zbl0407.35063MR562582
  8. [8] J. Ginibre and G. Velo, Sur une équation de Schrödinger non linéaire avec interaction non locale, in Nonlinear partial differential equations and their applications. Collège de France, Séminaire, vol. II, Pitman, Boston, 1981. Zbl0497.35024MR652511
  9. [9] J. Ginibre and G. Velo, Scattering theory in the energy space for a class of non–linear Schrödinger equations, J. Math. pures et appl., t. 64, 1985, p. 363-401. Zbl0535.35069MR839728
  10. [10] R.T. Glassey, Asymptotic behavior of solutions to a certain nonlinear-Hartree equations, Comm. Math. Phys., t. 53, 1977, p. 9-18. Zbl0339.35013MR486956
  11. [11] N. Hayashi and M. Tsutsumi, L∞-decay of classical solutions for nonlinear Schrödinger equations, preprint. Zbl0651.35014
  12. [12] N. Hayashi, K. Nakamitsu and M. Tsutsumi, On solutions of the initial value problem for the nonlinear Schrödinger equations, to appear in J. Funct. Anal. Zbl0657.35033MR880978
  13. [13] N. Hayashi and Y. Tsutsumi, Remarks on the scattering problem for nonlinear Schrödinger equations, preprint. MR921265
  14. [14] W. Hunziker, On the space-time behavior of Schrödinger wavefunctions. J. Math. Phys., t. 7, 1965, p. 300-304. Zbl0151.43801MR193939
  15. [15] A. Jensen, Commutator methods and a smoothing property of the Schrödinger evolution group. Math. Z., t. 191, 1986, p. 53-59. Zbl0594.35032MR812602
  16. [16] E.M. Stein, Singular Integral and Differentiability Properties of Functions, Princeton Univ. Press. Princeton Math. Series30, 1970. Zbl0207.13501MR290095
  17. [17] W.A. Strauss, Nonlinear invariant wave equations, in Invariant Wave Equations (Erice, 1977), Lecture Notes in Physics, t. 78, Springer-Verlag, Berlin-Heidelberg- New York, 1978, p. 197-249. MR498955
  18. [18] W.A. Strauss, Nonlinear scattering theory at low energy. J. Funct. Anal., t. 41, 1981, p. 110-133. Zbl0466.47006MR614228
  19. [19] W.A. Strauss, Nonlinear Scattering theory at low energy: Sequel. J. Funct. Anal., t. 43, p. 281-293, Zbl0494.35068MR636702
  20. [20] R.S. Strichartz, Restrictions of Fourier Transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J., t. 44, 1977, p. 705-714. Zbl0372.35001MR512086
  21. [21] Y. Tsutsumi, Global existence and asymptotic behavior of solutions for nonlinear Schrödinger equations, Doctor Thesis, Univ. of Tokyo, 1985. 
  22. [22] Y. Tsutsumi, Scattering problem for nonlinear Schrödinger equations. Ann. Inst. Henri Poincaré, Physique Théorique, t. 43, 1985, p. 321-347. Zbl0612.35104MR824843
  23. [23] Y. Tsutsumi and K. Yajima, The asymptotic behavior of nonlinear Schrödinger equations, Bull. (New Series). Amer. Math. Soc., t. 11, 1984, p. 186-188. Zbl0555.35028MR741737
  24. [24] K. Yajima, The surfboard Schrödinger equations. Comm. Math. Phys., t. 96, 1984, p. 349-360. Zbl0599.35037MR769352
  25. [25] J. Ginibre, Private communication. 
  26. [26] T. Kato, On nonlinear Schrödinger equations, preprint, University of California, Berkeley, 1986. MR1037322
  27. [27] Y. Tsutsumi, L2-solutions for nonlinear Schrödinger equations and nonlinear groups, to appear in Funkcialaj Ekvacioj. Zbl0638.35021MR915266

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.