Nonequilibrium central limit theorem for a tagged particle in symmetric simple exclusion

M. D. Jara; C. Landim

Annales de l'I.H.P. Probabilités et statistiques (2006)

  • Volume: 42, Issue: 5, page 567-577
  • ISSN: 0246-0203

How to cite

top

Jara, M. D., and Landim, C.. "Nonequilibrium central limit theorem for a tagged particle in symmetric simple exclusion." Annales de l'I.H.P. Probabilités et statistiques 42.5 (2006): 567-577. <http://eudml.org/doc/77908>.

@article{Jara2006,
author = {Jara, M. D., Landim, C.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Markov processes; hydrodynamic limit},
language = {eng},
number = {5},
pages = {567-577},
publisher = {Elsevier},
title = {Nonequilibrium central limit theorem for a tagged particle in symmetric simple exclusion},
url = {http://eudml.org/doc/77908},
volume = {42},
year = {2006},
}

TY - JOUR
AU - Jara, M. D.
AU - Landim, C.
TI - Nonequilibrium central limit theorem for a tagged particle in symmetric simple exclusion
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2006
PB - Elsevier
VL - 42
IS - 5
SP - 567
EP - 577
LA - eng
KW - Markov processes; hydrodynamic limit
UR - http://eudml.org/doc/77908
ER -

References

top
  1. [1] R. Arratia, The motion of a tagged particle in the simple symmetric exclusion system in Z , Ann. Probab.11 (1983) 362-373. Zbl0515.60097MR690134
  2. [2] P.A. Ferrari, E. Presutti, E. Scacciatelli, M.E. Vares, The symmetric simple exclusion process, I: Probability estimates, Stochastic Process. Appl.39 (1991) 89-105. Zbl0749.60094MR1135087
  3. [3] A. Galves, C. Kipnis, H. Spohn, unpublished manuscript. 
  4. [4] C. Kipnis, S.R.S. Varadhan, Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusion, Comm. Math. Phys.106 (1986) 1-19. Zbl0588.60058MR834478
  5. [5] J. Quastel, F. Rezakhanlou, S.R.S. Varadhan, Large deviations for the symmetric simple exclusion process in dimension d 3 , Probab. Theory Related Fields113 (1999) 1-84. Zbl0928.60087
  6. [6] K. Ravishankar, Fluctuations from the hydrodynamical limit for the symmetric simple exclusion in Z d , Stochastic Process. Appl.42 (1992) 31-37. Zbl0754.60127MR1172505
  7. [7] F. Rezakhanlou, Propagation of chaos for symmetric simple exclusion, Comm. Pure Appl. Math.XLVII (1994) 943-957. Zbl0808.60083MR1283878
  8. [8] H. Rost, M.E. Vares, Hydrodynamics of a one dimensional nearest neighbor model, Contemp. Math.41 (1985) 329-342. Zbl0572.60095MR814722
  9. [9] S. Sethuraman, S.R.S. Varadhan, H.T. Yau, Diffusive limit of a tagged particle in asymmetric exclusion process, Comm. Pure Appl. Math.53 (2000) 972-1006. Zbl1029.60084MR1755948
  10. [10] V. Thomée, Finite difference methods for linear parabolic equations, in: Ciarlet P.G., Lions J.L. (Eds.), Handbook of Numerical Analysis, North-Holland, 1990, pp. 5-196. Zbl0875.65080MR1039324
  11. [11] S.R.S. Varadhan, Self diffusion of a tagged particle in equilibrium for asymmetric mean zero random walks with simple exclusion, Ann. Inst. H. Poincaré Probab. Statist.31 (1995) 273-285. Zbl0816.60093MR1340041

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.