Closed geodesics for the Jacobi metric and periodic solutions of prescribed energy of natural hamiltonian systems

V. Benci

Annales de l'I.H.P. Analyse non linéaire (1984)

  • Volume: 1, Issue: 5, page 401-412
  • ISSN: 0294-1449

How to cite

top

Benci, V.. "Closed geodesics for the Jacobi metric and periodic solutions of prescribed energy of natural hamiltonian systems." Annales de l'I.H.P. Analyse non linéaire 1.5 (1984): 401-412. <http://eudml.org/doc/78083>.

@article{Benci1984,
author = {Benci, V.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {mechanical system; Hamiltonian system; periodic solution},
language = {eng},
number = {5},
pages = {401-412},
publisher = {Gauthier-Villars},
title = {Closed geodesics for the Jacobi metric and periodic solutions of prescribed energy of natural hamiltonian systems},
url = {http://eudml.org/doc/78083},
volume = {1},
year = {1984},
}

TY - JOUR
AU - Benci, V.
TI - Closed geodesics for the Jacobi metric and periodic solutions of prescribed energy of natural hamiltonian systems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1984
PB - Gauthier-Villars
VL - 1
IS - 5
SP - 401
EP - 412
LA - eng
KW - mechanical system; Hamiltonian system; periodic solution
UR - http://eudml.org/doc/78083
ER -

References

top
  1. [AM] A. Ambrosetti, G. Mancini, On a theorem by Ekeland and Lasry concerning the number of periodic Hamiltonian trajectories. J. Diff. Equ., t. 43, 1981, p. 1-6. Zbl0492.70018
  2. [A] V.I. Arnold, Méthodes mathématiques de la mécanique classique, Éditions Mir, Moscou, 1976. Zbl0385.70001MR474391
  3. [B] V. Benci, Normal modes of a Lagrangian system constrained in a potential well, Ann. Inst. H. Poincaré, t. 1, 1984, p. 379-400. Zbl0561.58006MR779875
  4. [Br] H. Berestycki, Solutions périodiques des systèmes Hamiltoniens. Séminaire N. Bourbaki, Volume 1982-1983. [BLMR] H. Berestycki, J.M. Lasry, G. Mancini, R. Ruf, Existence of multiple periodic orbits on star-shaped hamiltonian surfaces. Preprint. 
  5. [EL] I. Ekeland, J.M. Lasry, On the number of periodic trajectories for a hamiltonian flow on a convex energy surface, Ann. Math., t. 112, 1980, p. 283-319. Zbl0449.70014MR592293
  6. [GZ] H. Gluck, W. Ziller, Existence of periodic motions of conservative systems, in Seminar on Minimal Submanifold, E. Bombieri Ed., Princeton University Press, 1983. Zbl0546.58040MR795229
  7. [G] H. Goldstain, Classical Mechanics, Addison-Wesley, 1981. 
  8. [H] K. Hayashi, Periodic solutions of classical Hamiltonian systems, Tokyo J. Math., t. 6, 1983. Zbl0498.58010MR732099
  9. [M] J. Moser, Periodic orbits near an equilibrium and a theorem by A. Weinstein, Comm. Pure Appl. Math., t. 29, 1976, p. 727-747. Zbl0346.34024
  10. [R1] P.H. Rabinowitz, Periodontic solutions of Hamiltonian systems' a survey, SIAM J. Math. Anal., t. 13, 1982. Zbl0521.58028MR653462
  11. [R2] P.H. Rabinowitz, Periodic solutions of a Hamiltonian system on a prescribed energy surface, J. Differential Equations, t. 33, 1979, p. 336-352. Zbl0424.34043MR543703
  12. [S] H. Seifert, Periodischer bewegungen mechanischer Systeme, Math. Zeit., t. 51, 1948, p. 197-216. Zbl0030.22103MR25693
  13. [W] A. Weinstein, Normal modes for nonlinear Hamiltonian systems, Invent. Math., t. 20, 1973, p. 47-57. Zbl0264.70020MR328222

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.