Closed geodesics for the Jacobi metric and periodic solutions of prescribed energy of natural hamiltonian systems
Annales de l'I.H.P. Analyse non linéaire (1984)
- Volume: 1, Issue: 5, page 401-412
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBenci, V.. "Closed geodesics for the Jacobi metric and periodic solutions of prescribed energy of natural hamiltonian systems." Annales de l'I.H.P. Analyse non linéaire 1.5 (1984): 401-412. <http://eudml.org/doc/78083>.
@article{Benci1984,
author = {Benci, V.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {mechanical system; Hamiltonian system; periodic solution},
language = {eng},
number = {5},
pages = {401-412},
publisher = {Gauthier-Villars},
title = {Closed geodesics for the Jacobi metric and periodic solutions of prescribed energy of natural hamiltonian systems},
url = {http://eudml.org/doc/78083},
volume = {1},
year = {1984},
}
TY - JOUR
AU - Benci, V.
TI - Closed geodesics for the Jacobi metric and periodic solutions of prescribed energy of natural hamiltonian systems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1984
PB - Gauthier-Villars
VL - 1
IS - 5
SP - 401
EP - 412
LA - eng
KW - mechanical system; Hamiltonian system; periodic solution
UR - http://eudml.org/doc/78083
ER -
References
top- [AM] A. Ambrosetti, G. Mancini, On a theorem by Ekeland and Lasry concerning the number of periodic Hamiltonian trajectories. J. Diff. Equ., t. 43, 1981, p. 1-6. Zbl0492.70018
- [A] V.I. Arnold, Méthodes mathématiques de la mécanique classique, Éditions Mir, Moscou, 1976. Zbl0385.70001MR474391
- [B] V. Benci, Normal modes of a Lagrangian system constrained in a potential well, Ann. Inst. H. Poincaré, t. 1, 1984, p. 379-400. Zbl0561.58006MR779875
- [Br] H. Berestycki, Solutions périodiques des systèmes Hamiltoniens. Séminaire N. Bourbaki, Volume 1982-1983. [BLMR] H. Berestycki, J.M. Lasry, G. Mancini, R. Ruf, Existence of multiple periodic orbits on star-shaped hamiltonian surfaces. Preprint.
- [EL] I. Ekeland, J.M. Lasry, On the number of periodic trajectories for a hamiltonian flow on a convex energy surface, Ann. Math., t. 112, 1980, p. 283-319. Zbl0449.70014MR592293
- [GZ] H. Gluck, W. Ziller, Existence of periodic motions of conservative systems, in Seminar on Minimal Submanifold, E. Bombieri Ed., Princeton University Press, 1983. Zbl0546.58040MR795229
- [G] H. Goldstain, Classical Mechanics, Addison-Wesley, 1981.
- [H] K. Hayashi, Periodic solutions of classical Hamiltonian systems, Tokyo J. Math., t. 6, 1983. Zbl0498.58010MR732099
- [M] J. Moser, Periodic orbits near an equilibrium and a theorem by A. Weinstein, Comm. Pure Appl. Math., t. 29, 1976, p. 727-747. Zbl0346.34024
- [R1] P.H. Rabinowitz, Periodontic solutions of Hamiltonian systems' a survey, SIAM J. Math. Anal., t. 13, 1982. Zbl0521.58028MR653462
- [R2] P.H. Rabinowitz, Periodic solutions of a Hamiltonian system on a prescribed energy surface, J. Differential Equations, t. 33, 1979, p. 336-352. Zbl0424.34043MR543703
- [S] H. Seifert, Periodischer bewegungen mechanischer Systeme, Math. Zeit., t. 51, 1948, p. 197-216. Zbl0030.22103MR25693
- [W] A. Weinstein, Normal modes for nonlinear Hamiltonian systems, Invent. Math., t. 20, 1973, p. 47-57. Zbl0264.70020MR328222
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.