The global Cauchy problem for the non linear Schrödinger equation revisited

J. Ginibre; G. Velo

Annales de l'I.H.P. Analyse non linéaire (1985)

  • Volume: 2, Issue: 4, page 309-327
  • ISSN: 0294-1449

How to cite

top

Ginibre, J., and Velo, G.. "The global Cauchy problem for the non linear Schrödinger equation revisited." Annales de l'I.H.P. Analyse non linéaire 2.4 (1985): 309-327. <http://eudml.org/doc/78100>.

@article{Ginibre1985,
author = {Ginibre, J., Velo, G.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Cauchy problem; nonlinear Schrödinger equation; weak global solutions; Galerkin method; method of contraction},
language = {eng},
number = {4},
pages = {309-327},
publisher = {Gauthier-Villars},
title = {The global Cauchy problem for the non linear Schrödinger equation revisited},
url = {http://eudml.org/doc/78100},
volume = {2},
year = {1985},
}

TY - JOUR
AU - Ginibre, J.
AU - Velo, G.
TI - The global Cauchy problem for the non linear Schrödinger equation revisited
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1985
PB - Gauthier-Villars
VL - 2
IS - 4
SP - 309
EP - 327
LA - eng
KW - Cauchy problem; nonlinear Schrödinger equation; weak global solutions; Galerkin method; method of contraction
UR - http://eudml.org/doc/78100
ER -

References

top
  1. [1] J.B. Baillon, T. Cazenave, M. Figuera, C. R. Acad. Sci. Paris, t. 284, 1977, p. 869-872. Zbl0349.35048
  2. [2] J. Bergh, J. Löfström, Interpolation Spaces, Springer, Berlin-Heidelberg-New York, 1976. Zbl0344.46071MR482275
  3. [3] T. Cazenave, Proc. Roy. Soc. Edinburgh, t. 84, 1979, p. 327-346. Zbl0428.35021MR559676
  4. [4] T. Cazenave, A. Haraux, Ann. Fac. Sc. Toulouse, t. 2, 1980, p. 21-25. Zbl0411.35051MR583902
  5. [5] I. Ekeland, R. Temam, Analyse convexe et problèmes variationnels, Dunod, Paris, 1972. Zbl0281.49001
  6. [6] J. Ginibre, G. Velo, J. Funct. Anal., t. 32, 1979, p. 1-32 and Ann. IHP, t. A28, 1978, p. 287-316. Zbl0396.35028MR533219
  7. [7] J. Ginibre, G. Velo, Ann. IHP, t. C1, 1984, p. 309-323. Zbl0569.35070MR778977
  8. [8] J. Ginibre, G. Velo, C.R. Acad. Sci. Paris, t. 298, 1984, p. 137-140, and J. Math. Pur. Appl., in press. Zbl0593.35078MR741079
  9. [9] J. Ginibre, G. Velo, Math. Z., 1985, in press. MR786279
  10. [10] P. Hartman, Ordinary differential equations, Birkhäuser, Boston-Basel-Stuttgart, 1982. Zbl0476.34002
  11. [11] J.E. Lin, W. Strauss, J. Funct. Anal., t. 30, 1978, p. 245-263. Zbl0395.35070MR515228
  12. [12] J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod and Gauthier-Villars, Paris, 1969. Zbl0189.40603MR259693
  13. [13] J.L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, Vol. 1, Dunod, Paris, 1968. Zbl0165.10801MR247243
  14. [14] H. Pecher, Math. Z., t. 185, 1984, p. 261-270. Zbl0538.35063MR731347
  15. [15] H. Pecher, W. VonWAHL, Manuscripta Math., t. 27, 1979, p. 125-157. Zbl0399.35030MR526824
  16. [16] M. Reed, Abstract non-linear wave equations, Springer, Berlin-Heidelberg-New York, 1976. Zbl0317.35002MR605679
  17. [17] I.E. Segal, Bull. Soc. Math. France, t. 91, 1963, p. 129-135. Zbl0178.45403MR153967
  18. [18] E.M. Stein, Singular Integrals and differentiability properties of functions, Princeton University Press, Princeton, 1970. Zbl0207.13501MR290095
  19. [19] W. Strauss, Anais Acad. Brazil. Ciencias, t. 42, 1970, p. 645-651. Zbl0217.13104
  20. [20] W. Strauss, J. Funct. Anal., t. 41, 1981, p. 110-133. Ibid., t. 43, 1981, p. 281-293. Zbl0466.47006MR614228
  21. [21] R. Strichartz, Duke Math. J., t. 44, 1977, p. 705-714. Zbl0372.35001MR512086
  22. [22] F. Treves, Basic linear differential equations, Academic Press, New York-London, 1975. Zbl0305.35001
  23. [23] K. Yosida, Functional analysis, Springer, Berlin-Heidelberg-New York, 1978. Zbl0365.46001MR500055

Citations in EuDML Documents

top
  1. Cédric Galusinski, A singular perturbation problem in a system of nonlinear Schrödinger equation occurring in Langmuir turbulence
  2. Marco Luigi Bernardi, Fabio Luterotti, On some Schroedinger-type variational inequalities
  3. Ramona Anton, Strichartz inequalities for Lipschitz metrics on manifolds and nonlinear Schrödinger equation on domains
  4. Tosio Kato, On nonlinear Schrödinger equations
  5. Mikhael Balabane, On a regularizing effect of Schrödinger type groups
  6. Nicolas Burq, Estimations de Strichartz pour des perturbations à longue portée de l’opérateur de Schrodinger
  7. Cédric Galusinski, A singular perturbation problem in a system of nonlinear Schrödinger equation occurring in Langmuir turbulence
  8. Thomas Duyckaerts, Inégalités de résolvante pour l’opérateur de Schrödinger avec potentiel multipolaire critique
  9. Fabrice Planchon, Self-similar solutions and Besov spaces for semi-linear Schrödinger and wave equations
  10. J. Ginibre, G. Velo, Time decay of finite energy solutions of the non linear Klein-Gordon and Schrödinger equations

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.