Travelling fronts in cylinders

Henri Berestycki; Louis Nirenberg

Annales de l'I.H.P. Analyse non linéaire (1992)

  • Volume: 9, Issue: 5, page 497-572
  • ISSN: 0294-1449

How to cite

top

Berestycki, Henri, and Nirenberg, Louis. "Travelling fronts in cylinders." Annales de l'I.H.P. Analyse non linéaire 9.5 (1992): 497-572. <http://eudml.org/doc/78290>.

@article{Berestycki1992,
author = {Berestycki, Henri, Nirenberg, Louis},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {travelling wave solutions; infinite cylinder},
language = {eng},
number = {5},
pages = {497-572},
publisher = {Gauthier-Villars},
title = {Travelling fronts in cylinders},
url = {http://eudml.org/doc/78290},
volume = {9},
year = {1992},
}

TY - JOUR
AU - Berestycki, Henri
AU - Nirenberg, Louis
TI - Travelling fronts in cylinders
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1992
PB - Gauthier-Villars
VL - 9
IS - 5
SP - 497
EP - 572
LA - eng
KW - travelling wave solutions; infinite cylinder
UR - http://eudml.org/doc/78290
ER -

References

top
  1. [AN] S. Agmon, and L. Nirenberg, Properties of Solutions of Ordinary Differential Equations in Banach Space, Comm. Pure Appl. Math., Vol. 16, 1963, pp. 121-239. Zbl0117.10001MR155203
  2. [AW1] D.G. Aronson and H.F. Weinberger, Nonlinear Diffusion in Population Genetics, Combustion and Nerve Propagation, in "Partial Differential Equations and Related Topics", J. A. GOLDSTEIN Ed., Lecture Notes in Math., No. 446, Springer-Verlag, New York, 1975, pp. 5-49. Zbl0325.35050MR427837
  3. [AW2] D.G. Aronson and H.F. Weinberger, Multidimensional Nonlinear Diffusions Arising in Population Genetics, Adv. in Math., Vol. 30, 1978, pp. 33-58. Zbl0407.92014MR511740
  4. [BCN] H. Berestycki, L.A. Caffarelli and L. Nirenberg, Uniform Estimates for Regularization of Free Boundary Problems, Analysis and Partial Differential Equations, C. SADOSKY M. DECKER Ed., 1990, pp. 567-617. Zbl0702.35252MR1044809
  5. [BL1] H. Berestycki and B. Larrouturou, A Semilinear Elliptic Equation in a Strip Arising in a Two-Dimensional Flame Propagation Model, J. Reine Angewandte Math., Vol. 396, 1989, pp. 14-40. Zbl0658.35036MR988546
  6. [BL2] H. Berestycki and B. Larrouturou, Mathematical Aspects of Planar Flame Propagation, Longman Press (in preparation). Zbl0755.35090
  7. [BLL] H. Berestycki, B. Larrouturou and P.-L. Lions, Multidimensional Traveling-Wave Solutions of a Flame Propagation Model, Arch. Rational Mech. Anal., Vol. 111, 1990, pp. 33-49. Zbl0711.35066MR1051478
  8. [BLR] H. Berestycki, B. Larrouturou and J.M. Roquejoffre, Stability of Travelling Fronts in a Curved Flame Model, Part I. Linear Analysis, Arch. Rational. Mech. Anal., Vol. 117, 1991, pp. 97-117. Zbl0763.76033MR1145107
  9. [BNS] H. Berestycki, B. Nicolaenko and B. Scheurer, Travelling Wave Solutions to Combustion Models and their Singular Limits, S.I.A.M. J. Math. Anal., Vol. 16, (6), 1985, pp. 1207-1242. Zbl0596.76096MR807905
  10. [BN1] H. Berestycki and L. Nirenberg, Some Qualitative Properties of Solutions of Semilinear Elliptic Equations in Cylindrical Domains, in Analysis, etc. (volume dedicated to J. Moser), P. H. RABINOWITZ and E. ZEHNDER Ed., Academic Press, New York, 1990, pp. 115-164. Zbl0705.35004MR1039342
  11. [BN2] H. Berestycki and L. Nirenberg, Travelling Front Solutions of Semilinear Equations in Higher Dimensions, Frontiers in Pure and Appl. Math., R. DAUTRAY Ed., North-Holland, 1991, pp. 31-41. Zbl0780.35054MR1110590
  12. [BN3] H. Berestycki and L. Nirenberg, On the Method of Moving Planes and the Sliding Method, Bol. da Soc. Brasileira de Matematica, Vol. 22, 1991, pp. 1-37. Zbl0784.35025MR1159383
  13. [BN4] H. Berestycki and L. Nirenberg, Asymptotic Behaviour via the Harnack Inequality, Nonlinear Analysis.A tribute in Honour of Giovanni Prodi, A. AMBROSETTI et al. Ed., Sc. Normale Sup. Pisa, 1991, pp. 135-144. Zbl0840.35011MR1205378
  14. [CH] R.G. Casten and C.J. Holland, Instability Results for Reaction-Diffusion Equations with Neumann Boundary Conditions, J. Diff. Eq., Vol. 27, 1978, pp. 266-273. Zbl0338.35055MR480282
  15. [Fi] P.C. Fife, Mathematical Aspects of Reacting and Diffusing Systems, Lect. Notes Biomath., No. 28, Springer-Verlag, New York, 1979. Zbl0403.92004MR527914
  16. [FM] P.C. Fife and J.B. Mcleod, The Approach of Solutions of Nonlinear Diffusion Equations to Travelling Front Solutions, Arch. Rat. Mech. Anal., Vol. 65, 1977, pp. 335-361. Zbl0361.35035MR442480
  17. [Fr1] M. Freidlin, Limit Theorems for Large Deviations and Reaction-Diffusion Equations, Ann. Prob., Vol. 13, 1985, pp. 639-675. Zbl0576.60070MR799415
  18. [Fr2] M. Freidlin, KPP in cylinders (to appear). 
  19. [G] R. Gardner, Existence of Multidimensional Traveling Wave Solutions of an Initial-Boundary Value Problem, J. Diff. Eq., Vol. 61, 1986, pp. 335-379. Zbl0549.35066MR829368
  20. [H] S. Heinze, Traveling Waves for Semilinear Parabolic Partial Differential Equations in Cylindrical Domains, preprint. Zbl0699.35137
  21. [JN] W.E. Johnson and W. Nachbar, Laminar Flame Theory and the Steady Linear Burning of a Monopropellant, Arch. Rat. Mech. Anal., Vol. 12, 1963, pp. 58-91. Zbl0111.40502MR145845
  22. [K1] Ja.I. Kanel', Stabilization of Solution of the Cauchy Problem for Equations Encountered in Combustion Theory, Mat. Sbornik, Vol. 59, 1962, pp. 245-288. Zbl0152.10302MR157130
  23. [K2] Ja I. Kanel',On Steady State Solutions to Systems of Equations Arising in Combustion Theory, Dokl. Akad. Nauk U.S.S.R., Vol. 149, 1963, pp. 367-369. 
  24. [KPP] A.N. Kolmogorov, I.G. Petrovsky and N.S. Piskunov, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bulletin Université d'État à Moscow (Bjul. Moskowskogo Gos. Univ.), Série internationale, section A. 1, 1937, pp. 1-26, English translation: Study of the Diffusion Equation with Growth of the Quantity of Matter and its Application to a Biology Problem. In Dynamics of curved fronts, R. PELCÉ Ed., Perspectives in Physics Series, Academic Press, New York, 1988, pp. 105-130. Zbl0018.32106
  25. [L] P.D. Lax, A Phragmén-Lindelöf Theorem in HarmonicAnalysis and its Applications to Some Questions in the Theory of Elliptic Equations, Comm. Pure Appl. Math., Vol. 10, 1957, pp. 361-389. Zbl0077.31501MR93706
  26. [M] H. Matano, Asymptotic Behavior and Stability of Solutions of Semilinear Diffusion Equations, Publ. R.I.M.S., Kyoto University, Vol. 15, 1979, pp.401-454. Zbl0445.35063MR555661
  27. [McK] H. Mckean, An Application of Brownian Motion to the Equation of Kolmogorov-Petrovskii-Piscounov, Comm. Pure Appl. Math., Vol. 28, 1975, pp.323-331; Vol. 29, 1976, pp. 553-554. Zbl0316.35053MR400428
  28. [O] O. Oleinik (to appear). 
  29. [P] A. Pazy, Asymptotic Expansions of Solutions of Ordinary Differential Equations in Hilbert Space, Arch. Rational. Mech. Anal., Vol. 24, 1967, pp. 193-218. Zbl0147.12303MR209618
  30. [R1] J.M. Roquejoffre, Stability of Travelling Fronts in a Curved Flame Model. Part II: Non-Linear Orbital Stability, Arch. Rational. Mech. Anal. (to appear). MR1145108
  31. [R2] J.M. Roquejoffre, Convergence to Travelling Waves for Solutions of a Class of Semilinear Parabolic Equations (to appear). Zbl0806.35093MR1270581
  32. [Ve1] J.M. Vega, The Asymptotic Behavior of the Solutions of Some Semilinear Elliptic Equations in Cylindrical Domains, J. Diff. Eqs. (submitted). Zbl0803.35058
  33. [Ve2] J.M. Vega, Travelling Wavefronts of Reaction-Diffusion Equations in Cylindrical Domains, Comm. P.D.E. (submitted). Zbl0816.35058
  34. [Vo1] A.I. Vol'pert, On the Propagation of Waves Described by Nonlinear Parabolic Equations (Comments on paper No. 6 by Kolmogorov, Petrowsky and Piskunov) in I. G. Petrovsky'sCollected Works in Differential Equations and Probability Theory, Akad. Nauk Moscow1988, V. I. ARNOLD et al. Ed., pp. 333-358. 
  35. [Vo2] A.I. Vol'pert, Wave Solutions of Parabolic Equations, Inst. Chemical Physics, Acad. Sci. (Chernogolovka), 1983, Russian preprint. 
  36. [VV1] A.I. Volpert and V.A. Volpert, Applications of the Rotation Theory of Vector Fields to the Study of Wave Solutions of Parabolic Equations, Trud. Moscow Math. Soc., Vol. 52, 1989. English. Translation: Trans. Moscow Math. Soc., Vol. 52, 1990, pp. 59-108. Zbl0711.35064
  37. [VV2] A.I. Volpert and V.A. Volpert, Existence and Stability of Traveling Waves in Chemical Kinetics. Dynamics of Chemical and Biological Systems, Novosibirsk Nauka, 1989, pp. 56-131 (in Russian). 
  38. [VV3] A.I. Volpert and V.A. Volpert, Traveling Waves in Monotone Parabolic Systems, Preprint. Branch of the Inst. of Chemical Physics, Chernogolovka, 1990, 49 p. (in Russian). 
  39. [ZFK] J.B. Zeldovich and D.A. Frank-Kamenetskii, A Theory of Thermal Propagation of Flame, Acta Physiochimica U.R.S.S., Vol. 9, 1938. English Translation: In Dynamics of Curved Fronts, R. PELCÉ Ed., Perspectives in Physics Series, Academic Press, New York, 1988, pp. 131-140. 

Citations in EuDML Documents

top
  1. A. I. Volpert, V. A. Volpert, Construction of the Leray-Schauder degree for elliptic operators in unbounded domains
  2. Alexander Kiselev, Leonid Ryzhik, Enhancement of the traveling front speeds in reaction-diffusion equations with advection
  3. Jean-Michel Roquejoffre, Eventual monotonicity and convergence to travelling fronts for the solutions of parabolic equations in cylinders
  4. James Nolen, Jack Xin, Asymptotic spreading of KPP reactive fronts in incompressible space-time random flows
  5. François Hamel, Régis Monneau, Jean-Michel Roquejoffre, Stability of travelling waves in a model for conical flames in two space dimensions
  6. François Hamel, Reaction-diffusion problems in cylinders with no invariance by translation. Part II : monotone perturbations
  7. François Hamel, Reaction-diffusion problems in cylinders with no invariance by translation. Part I : small perturbations
  8. Hartmut R. Schwetlick, Travelling fronts for multidimensional nonlinear transport equations
  9. François Hamel, Formules min-max pour les vitesses d'ondes progressives multidimensionnelles
  10. Henri Berestycki, Peter Constantin, Lenya Ryzhik, Non-planar fronts in Boussinesq reactive flows

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.