Exact controllability for semilinear wave equations in one space dimension
Annales de l'I.H.P. Analyse non linéaire (1993)
- Volume: 10, Issue: 1, page 109-129
- ISSN: 0294-1449
Access Full Article
topHow to cite
topZuazua, E.. "Exact controllability for semilinear wave equations in one space dimension." Annales de l'I.H.P. Analyse non linéaire 10.1 (1993): 109-129. <http://eudml.org/doc/78296>.
@article{Zuazua1993,
author = {Zuazua, E.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Hilbert uniqueness method; exact controllability; semilinear wave equation},
language = {eng},
number = {1},
pages = {109-129},
publisher = {Gauthier-Villars},
title = {Exact controllability for semilinear wave equations in one space dimension},
url = {http://eudml.org/doc/78296},
volume = {10},
year = {1993},
}
TY - JOUR
AU - Zuazua, E.
TI - Exact controllability for semilinear wave equations in one space dimension
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1993
PB - Gauthier-Villars
VL - 10
IS - 1
SP - 109
EP - 129
LA - eng
KW - Hilbert uniqueness method; exact controllability; semilinear wave equation
UR - http://eudml.org/doc/78296
ER -
References
top- [BLR1] C. Bardos, G. Lebeau and J. Rauch, Contrôle et stabilisation dans les problèmes hyperboliques, Appendix II in J. L. LIONS [L2], pp. 492-537.
- [BLR2] C. Bardos, G. Lebeau and J. Rauch, Sharp Sufficient Conditions for the Observation, Control and Stabilization of Waves from the Boundary, S.I.A.M. J. Control Optim., Vol. 30, 1992, pp. 1024-1065. Zbl0786.93009MR1178650
- [CAQ] N. Carmichael and M.D. Quinn, Fixed Point Methods in Nonlinear Control, in Distributed Parametes Systems, F. KAPPEL, K. KUNISCH and W. SCHAPACHER Eds., Lecture Notes in Control and Information Sciences, #75, Springer-Verlag, Berlin, 1985, pp. 24-51. Zbl0577.93028MR897550
- [CH] T. Cazenave and A. Haraux, Equations d'évolution avec non-linéarité logarithmique, Ann. Fac. Sci. Toulouse, Vol. 2, 1980, pp. 21-51. Zbl0411.35051MR583902
- [Ch] W.C. Chewning, Controllability of the Nonlinear Wave Equation in Several Space Variables, S.I.A.M. J. Control Optim., Vol. 14, 11976, pp. 19-25. Zbl0322.93009MR638222
- [Ci] M.A. Cirina, Boundary Controllability of Nonlinear Hyperbolic Systems, S.I.A.M. J. Control, Vol. 7, 1969, pp. 198-212. Zbl0182.20203MR254408
- [F] H.O. Fattorini, Local Controllability of a Nonlinear Wave Equation, Math. Systems Theory, Vol. 9, 1975, pp. 363-366. Zbl0319.93009MR430923
- [H] H. Hermes, Controllability and the Singular Problem, S.I.A.M. J. Control, Vol. 2, 1965, p. 241-260. Zbl0163.10803MR173572
- [LaT1] I. Lasiecka and R. Triggiani, Exact Controllability of Semilinear Abstract Systems with Applications to Wave and Plates Boundary Control Problems, Proceedings of the 28th I.E.E.E. Conference on Decision and Control, 1989, pp. 2291-2294.
- [LaT2] I. Lasiecka and R. Triggiani, Exact Controllability of Semilinear Abstract Systems with Applications to Wave and Plates Boundary Control Problems, Appl. Math. & Optim., Vol. 23, 1991, p. 109-154. Zbl0729.93023
- [LeM] E.B. Lee and L.W. Markus, Foundations of Optimal Control Theory, John Wiley, New York, 1967. Zbl0159.13201MR220537
- [L1] J.L. Lions, Contrôlabilité exacte de systèmes distribués, C. R. Acad. Sci. Paris, Vol. 302, 1986, pp. 471-475. Zbl0589.49022MR838402
- [L2] J.L. Lions, Contrôlabilité exacte, stabilisation et perturbations de systèmes distribués. Tome 1. Contrôlabilité exacte, Masson, RMA8, 1988. Zbl0653.93002
- [L3] J.L. Lions, Exact Controllability, Stabilization and Perturbations for Distributed Systems, S.I.A.M. Rev., Vol. 30, 1988, pp. 1-68. Zbl0644.49028MR931277
- [Lu] D.L. Lukes, Global Controllability of Nonlinear Systems, S.I.A.M. J. Control, Vol. 10, 1972, pp. 112-126. Zbl0264.93004MR304004
- [M] L. Markus, Controllability of Nonlinear Processes, S.I.A.M. J. Control, Vol. 3, 1965, p. 78-90. Zbl0294.93001MR186487
- [N] K. Naito, Controllability of Semilinear Control Systems, S.I.A.M. J. Control Optim., Vol. 25, 1987, p. 715-722. Zbl0617.93004MR885194
- [NSe] K. Naito and Th.I. Seidman, Invariance of the Approximately Reachable Set Under Nonlinear Perturbations, S.I.A.M. J. Cont. Optim., Vol. 29, 1991, pp. 731- 750. Zbl0729.49022MR1089153
- [R] D.L. Russell, Controllability and Stabilizability Theory for Linear Partial Differential Equations: Recent Progress and Open Questions, S.I.A.M. Rev., Vol. 20, 1978, pp. 639-739. Zbl0397.93001MR508380
- [Se] Th.I. Seidman, Invariance of the Reachable Set Under Nonlinear Perturbations, S.I.A.M. J. Control Optim., Vol. 23, 1987, pp. 1173-1191. Zbl0626.49018MR905039
- [S] J. Simon, Compact Sets in the Space LP (0, T; B), Annali di Matematica pura ed Applicata, (IV), Vol. CXLVI, 1987, pp. 65-96. Zbl0629.46031MR916688
- [Z1] E. Zuazua, Contrôlabilité exacte de systèmes d'évolution non linéaires, C. R. Acad. Sci. Paris, Vol. 306, 1988, pp. 129-132. Zbl0639.49029MR929105
- [Z2] E. Zuazua, Exact Controllability for the Semilinear Wave Equation, J. Math. pures et appl., Vol. 69, 1990, pp. 1-32. Zbl0638.49017MR1054122
- [Z3] E. Zuazua, An Introduction to the Exact Controllability for Distributed Systems,Textos e Notas44 , C.M.A.F., Universidades de Lisboa, 1990. MR1108879
- [Z4] E. Zuazua, Exact Controllability of Semilinear Distributed Systems, Proceedings of the 27th I.E.E.E. Conference on Decision and Control, 1988, pp. 1265-1268.
- [Z5] E. Zuazua, Exact Boundary Controllability for the Semilinear Wave Equation, in Nonlinear Partial Differential Equations and their Applications, H. BREZIS and J. J. LIONS, Séminaire du Collège de France1987/1988, X, Research Notes in Mathematics, Pitman, 1991, pp. 357-391. Zbl0731.93011MR1131832
- [Z6] E. Zuazua, Contrôlabilité exacte d'une équation des ondes surlinéaire à une dimension d'espace, C. R. Acad. Sci. Paris, 311, 1990, pp. 285-290. Zbl0721.93009MR1071628
- [Z7] E. Zuazua, Exponential Decay for Semilinear Wave Equations with Localized Damping, Comm. in P.D.E., Vol. 15, (2), 1990, pp. 205-235. Zbl0716.35010MR1032629
Citations in EuDML Documents
top- E. Fernández-Cara, Null controllability of the semilinear heat equation
- Piermarco Cannarsa, Vilmos Komornik, Paola Loreti, Well posedness and control of semilinear wave equations with iterated logarithms
- Qilong Gu, Tatsien Li, Exact boundary controllability for quasilinear wave equations in a planar tree-like network of strings
- Piermarco Cannarsa, Vilmos Komornik, Paola Loreti, Well posedness and control of semilinear wave equations with iterated logarithms
- Abdoua Tchousso, Thibaut Besson, Cheng-Zhong Xu, Exponential stability of distributed parameter systems governed by symmetric hyperbolic partial differential equations using Lyapunov’s second method
- S. Ervedoza, M. Vanninathan, Controllability of a simplified model of fluid-structure interaction
- Enrique Fernández-Cara, Enrique Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations
- Antonio López, Enrique Zuazua, Some new results related to the null controllability of the heat equation
- Enrique Fernández-Cara, Manuel González-Burgos, Sergio Guerrero, Jean-Pierre Puel, Exact controllability to the trajectories of the heat equation with Fourier boundary conditions: the semilinear case
- Abdoua Tchousso, Thibaut Besson, Cheng-Zhong Xu, Exponential stability of distributed parameter systems governed by symmetric hyperbolic partial differential equations using Lyapunov's second method
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.