Homoclinic and period-doubling bifurcations for damped systems

Ugo Bessi

Annales de l'I.H.P. Analyse non linéaire (1995)

  • Volume: 12, Issue: 1, page 1-25
  • ISSN: 0294-1449

How to cite

top

Bessi, Ugo. "Homoclinic and period-doubling bifurcations for damped systems." Annales de l'I.H.P. Analyse non linéaire 12.1 (1995): 1-25. <http://eudml.org/doc/78350>.

@article{Bessi1995,
author = {Bessi, Ugo},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {damped systems; homoclinic bifurcations; infinite cascade of period- doubling bifurcations},
language = {eng},
number = {1},
pages = {1-25},
publisher = {Gauthier-Villars},
title = {Homoclinic and period-doubling bifurcations for damped systems},
url = {http://eudml.org/doc/78350},
volume = {12},
year = {1995},
}

TY - JOUR
AU - Bessi, Ugo
TI - Homoclinic and period-doubling bifurcations for damped systems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1995
PB - Gauthier-Villars
VL - 12
IS - 1
SP - 1
EP - 25
LA - eng
KW - damped systems; homoclinic bifurcations; infinite cascade of period- doubling bifurcations
UR - http://eudml.org/doc/78350
ER -

References

top
  1. [1] K. Alligood and J. Yorke, Cascades of Period-doublig Bifurcations: a Prerequisite for Horseshoes, Bull. Amer. Math. Soc., Vol. 9, 1983, pp. 319-323. Zbl0541.58039MR714994
  2. [2] U. Bessi, A Variational Proof of a Sitnikov-like Theorem, to appear on Nonlin. Anal., T.M.A. Zbl0778.34036MR1220837
  3. [3] U. Bessi, Global Homoclinic Bifurcation for Damped Systems, to appear onMath. Zeit. Zbl0826.34041MR1324535
  4. [4] S.N. Chow, J.K. Hale and J. Mallet-Paret, An Example of Bifurcation to Homoclinic Orbits, J.D.E., Vol. 37, 1980, pp. 351-373. Zbl0439.34035MR589997
  5. [5] V. Coti Zelati, I. Ekeland and E. Séré, A Variational Approach to Homoclinic Orbits in Hamiltonian Systems, Math. Ann., Vol. 288, 1990, pp. 133-160. Zbl0731.34050MR1070929
  6. [6] V. Coti Zelati and P.H. Rabinowitz, Homoclinic Orbits for Second Order Hamiltonian Systems Possessing Superquadratic Potentials, J. Amer. Math. Soc., Vol. 4, 1991, pp. 693-727. Zbl0744.34045MR1119200
  7. [7] J. Franks, Period Doubling and the Lefschetz Formula, Trans. Am. Math. Soc., Vol. 1, 1985, pp. 275-283. Zbl0552.58025MR766219
  8. [8] J. Leray and J. Schauder, Topologie et Équations fonctionnelles, Ann. Scien. École norm. Sup., 1934, pp. 45-78. Zbl0009.07301MR1509338JFM60.0322.02
  9. [9] S. Mathlouthi, Bifurcation d'orbites homoclines pour les systèmes hamiltoniens, Annales de la Faculté des Sciences de Toulouse, Vol. 1, 1992, pp. 211-236. Zbl0780.58034MR1202072
  10. [10] A. Marino and G. Prodi, Metodi Perturbativi nella Teoria di Morse, Boll. U.M.I., Vol. 11, 1975, pp. 1-32. Zbl0311.58006MR418150
  11. [11] M. Misiurewitz, On Non-continuity of Topological Entropy, Bull. Acad. Pol. Sci. , Vol. 19, 1971, pp. 319-320. Zbl0208.52101MR287578
  12. [12] S. Newhouse, Lectures on Dynamical Systems, C.I.M.E. Summer School at Bressanone, Italy, Birkhaueser, Boston, 1980. Zbl0444.58001MR660646
  13. [13] P.H. Rabinowitz, Nonlinear Sturm-Liouville Problems for Second Order O.D.E., Comm. Pure and Appl. Math., Vol. 23, 1970, pp. 939-961. Zbl0206.09706MR284642
  14. [14] E. Séré, Looking for the Bernoulli Shift, Ann. Inst. H. Poincaré, Anal. non Linéaire, Vol. 10, 1993, pp. 561-590. Zbl0803.58013MR1249107

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.