Nonlinear instability of double-humped equilibria
Annales de l'I.H.P. Analyse non linéaire (1995)
- Volume: 12, Issue: 3, page 339-352
- ISSN: 0294-1449
Access Full Article
topHow to cite
topGuo, Yan, and Strauss, Walter A.. "Nonlinear instability of double-humped equilibria." Annales de l'I.H.P. Analyse non linéaire 12.3 (1995): 339-352. <http://eudml.org/doc/78362>.
@article{Guo1995,
author = {Guo, Yan, Strauss, Walter A.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Vlasov-Poisson system; Penrose linear instability condition},
language = {eng},
number = {3},
pages = {339-352},
publisher = {Gauthier-Villars},
title = {Nonlinear instability of double-humped equilibria},
url = {http://eudml.org/doc/78362},
volume = {12},
year = {1995},
}
TY - JOUR
AU - Guo, Yan
AU - Strauss, Walter A.
TI - Nonlinear instability of double-humped equilibria
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1995
PB - Gauthier-Villars
VL - 12
IS - 3
SP - 339
EP - 352
LA - eng
KW - Vlasov-Poisson system; Penrose linear instability condition
UR - http://eudml.org/doc/78362
ER -
References
top- [BR1] J. Batt and G. Rein, Global classical solutions of the periodic Vlasov-Poisson system in three dimensions, C. R. Acad. Sci. Paris, t. 313, Serie 1, 1991, pp. 411-416. Zbl0741.35058MR1126425
- [BR2] J. Batt and G. Rein, A rigorous stability result for the Vlasov-Poisson equation in three dimensions, Anal. di Mat. Pura ed Appl., Vol. 164, 1993, pp. 133-154. Zbl0791.49030MR1243953
- [G] C.S. Gardner, Bound on the energy available from a plasma, Phys. Fluids, Vol. 6, 1963, pp. 839-840. MR152330
- [HM] D. Holm, J. Marsden, T. Ratiu and A. Weinstein, Nonlinear stability of fluid and plasma equilibria, Phys. Rep., Vol. 123, 1985, pp. 1-116. Zbl0717.76051MR794110
- [H] E. Horst, On the asymptotic growth of the solutions of the Vlasov-Poisson system, Math. Meth. Appl. Sci., Vol. 16, 1993, pp. 75-85. Zbl0782.35079MR1200156
- [GSS] M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry, part 2, J. Funct. Anal., Vol. 94, 2, 1990, pp. 308-348. Zbl0711.58013MR1081647
- [K] N.A. Krall and A.W. Trivelpiece, Principles of Plasma Physics, McGraw-Hill, 1973.
- [LP] P. Lions and B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system. Invent. Math., Vol. 105, 1991, pp. 415- 430. Zbl0741.35061MR1115549
- [MP] C. Marchioro and M. Pulvirenti, A note on the nonlinear stability of a spatially symmetric Vlasov-Poisson flow, Math. Mech. in the Appl. Sci., Vol. 8, 1986, pp. 284-288. Zbl0609.35008MR845931
- [P] O. Penrose, Electrostatic instability of a uniform non-Maxwellian plasma, Phys. Fluids, Vol. 3, 1960, pp. 258-265. Zbl0090.22801
- [Pf] K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Diff. Eqns., Vol. 92, 1992, pp. 281-303. Zbl0810.35089MR1165424
- [S] J. Schaeffer, Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions, Comm. P.D.E., Vol. 16, 1991, pp. 1313-1335. Zbl0746.35050MR1132787
- [Sh] Y. Shizuta, On the classical solutions of the Boltzmann equation, Comm. Pure Appl. Math., Vol. 36, 1983, pp. 705-754. Zbl0515.35002MR720591
Citations in EuDML Documents
top- Emmanuel Grenier, Limite quasi-neutre en dimension
- B. Desjardins, E. Grenier, Linear instability implies nonlinear instability for various types of viscous boundary layers
- Gerhard Rein, Selfgravitating systems in Newtonian theory - the Vlasov-Poisson system
- Susan Friedlander, Walter Strauss, Misha Vishik, Nonlinear instability in an ideal fluid
- Daniel Han-Kwan, Anisotropie dans un plasma fortement magnétisé
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.