Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier-Stokes equations in 3

F. Planchon

Annales de l'I.H.P. Analyse non linéaire (1996)

  • Volume: 13, Issue: 3, page 319-336
  • ISSN: 0294-1449

How to cite

top

Planchon, F.. "Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier-Stokes equations in $\mathbb {R}^3$." Annales de l'I.H.P. Analyse non linéaire 13.3 (1996): 319-336. <http://eudml.org/doc/78385>.

@article{Planchon1996,
author = {Planchon, F.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Besov space; heat kernel; paraproduct decomposition; Bernstein's lemma},
language = {eng},
number = {3},
pages = {319-336},
publisher = {Gauthier-Villars},
title = {Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier-Stokes equations in $\mathbb \{R\}^3$},
url = {http://eudml.org/doc/78385},
volume = {13},
year = {1996},
}

TY - JOUR
AU - Planchon, F.
TI - Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier-Stokes equations in $\mathbb {R}^3$
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1996
PB - Gauthier-Villars
VL - 13
IS - 3
SP - 319
EP - 336
LA - eng
KW - Besov space; heat kernel; paraproduct decomposition; Bernstein's lemma
UR - http://eudml.org/doc/78385
ER -

References

top
  1. [1] H. Beirã o da Vega, Existence and Asymptotic Behaviour for Strong Solutions of the Navier-Stokes Equations in the Whole Space, Indiana Univ. Math. Journal, Vol. 36(1), 1987, pp. 149-166. Zbl0601.35093MR876996
  2. [2] J. Bergh and J. Löfstrom, Interpolation Spaces, An Introduction, Springer-Verlag, 1976. Zbl0344.46071MR482275
  3. [3] J.M. Bony, Calcul symbolique et propagation des singularités dans les équations aux dérivées partielles non linéaires, Ann. Sci. Ecole Norm. Sup., Vol. 14, 1981, pp. 209-246. Zbl0495.35024MR631751
  4. [4] M. Cannone, Ondelettes, Paraproduits et Navier-Stokes, PhD thesis, Université Paris IX, CEREMADE F-75775 PARIS CEDEX, 1994, to be published by Diderot Editeurs (1995). MR1688096
  5. [5] J.-Y. Chemin, Remarques sur l'existence globale pour le système de Navier-Stokes incompressible, SIAM Journal Math. Anal., Vol. 23, 1992, pp. 20-28. Zbl0762.35063MR1145160
  6. [6] Y. Giga, Solutions for Semi-Linear Parabolic Equations in Lp and Regularity of Weak Solutions of the Navier-Stokes System, Journal of differential equations, Vol. 61, 1986, pp. 186-212. Zbl0577.35058
  7. [7] Y. Giga and T. Miyakawa, Solutions in Lr of the Navier-Stokes Initial Value Problem, Arch. Rat. Mech. Anal., Vol. 89, 1985, pp. 267-281. Zbl0587.35078MR786550
  8. [8] R. Kajikiya and T. Miyakawa, On L2 Decay of Weak Solutions of the Navier-Stokes Equations in Rn, Math. Zeit., Vol. 192, 1986, pp. 135-148. Zbl0607.35072MR835398
  9. [9] T. Kato, Strong Lp Solutions of the Navier-Stokes Equations in Rm with Applications to Weak Solutions, Math. Zeit., Vol. 187, 1984, pp. 471-480. Zbl0545.35073MR760047
  10. [10] T. Kato and H. Fujita, On the non-stationnary Navier-Stokes system, Rend. Sem. Math. Univ. Padova, Vol. 32, 1962, pp. 243-260. Zbl0114.05002MR142928
  11. [11] T. Kato and H. Fujita, On the Navier-Stokes Initial Value Problem I, Arch. Rat. Mech. Anal., Vol. 16, 1964, pp. 269-315. Zbl0126.42301MR166499
  12. [12] J. Peetre, New thoughts on Besov Spaces, Duke Univ. Math. Series, Duke University, Durham, 1976. Zbl0356.46038MR461123
  13. [13] J. Serrin, On the Interior Regularity of Weak Solutions of the Navier-Stokes Equations, Arch. Rat. Mech. Anal., Vol. 9, 1962, pp. 187-195. Zbl0106.18302MR136885
  14. [14] E.M. Stein, Singular Integral and Differentiability Properties of Functions, Princeton University Press, 1970. Zbl0207.13501MR290095
  15. [15] M. Taylor, Analysis on Morrey Spaces and Applications to Navier-Stokes and Other Evolution Equations, Comm. in PDE, Vol. 17, 1992, pp. 1407-1456. Zbl0771.35047MR1187618
  16. [16] H. Triebel, Theory of Function Spaces, volume 78 of Monographs in Mathematics, Birkhauser, 1983. Zbl0546.46027MR730762

Citations in EuDML Documents

top
  1. Isabelle Gallagher, Dragoş Iftimie, Fabrice Planchon, Stabilité et asymptotique en temps grand de solutions globales des équations de Navier-Stokes
  2. Dragoş Iftimie, Equations de Navier-Stokes sur des domaines minces tridimensionnels et espaces anisotropes
  3. Isabelle Gallagher, Décomposition en profils pour les solutions des équations de Navier-Stokes
  4. Isabelle Gallagher, Profile decomposition for solutions of the Navier-Stokes equations
  5. Marius Paicu, Fluides incompressibles horizontalement visqueux
  6. Marco Cannone, Nombres de Reynolds, stabilité et Navier-Stokes

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.